
118 

TifERMAL AND DYNAMICAL PEA 1URES OF A THUNDERSTORM 

WITH A TILTED AXIS OF ROTATION 

T. Theodore Fujita 

Number 118 
December 197.3 





THERMAL AND DYNAMICAL FEATURES OF A THUNDERSTORM 

WITH A TILTED AXIS OF ROTATION 

by 

T. Theodore Fujita 
The University of Chicago 

SMRP Research Paper No. 118 

December 1973 

The research reported in this paper has been sponsored by the National Aero­
nautics and Space Administration under grant NGR 14-001-008. 



THERMAL AND DYNAMICAL FEATURES OF A THUNDERSTORM 

WITH A TILTED AXIS OF ROTATION 

1. INTRODUCTION 

T. Theodore Fujita 
The University of Chicago 

The first sequence of radar pictures of a rotati:pg thunderstorm in the shape of 

a rotating hook were obtained by the Illinois State Water Survey. [Refer to reports by 

Huff et al. (1954) and Fujita (1958 ). ] Since then a large number of cloud photographs 

of the parent or mother clouds of tornadoes were obtained. One of the best examples 

of early storms is the Fargo tornado cloud of June 20, 1957. [Refer to Fujita (1960).] 

Recent develo!Xllents in Doppler radar now permit one to scan the entire volume of a 

thunderstorm in an attempt to establish velocity vectors of hydrometeors . [Refer to 

Brown et al. (1973).] 

It is a well-established concept that a thunderstorm, or a portion thereot . 

rotates when an intense tornado forms. In other words, strong tornadoes tend to spawn 

fr<?m rotating thunderstorms. Despite an early presumption that the r otational axis is 

more or less vertical, observational evidence indicates a significant tilt. One of the 

bes t examples is the April 21, 1961 cloud photographed by Fujita from the Weather 

Bureau's DC-6 in a r esearch flight mission. Although a sequence of pictures showing 

an apparent tilt was available, no research on the tilt was attempted until Dr. Robert 

Cos ten (1972) of NASA's Langley Research Center pointed out the importance of such 

The research r eported in this paper has been sponsored by the National Aero­
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a study. Thus, the data collected some 12 years ago were re-analyzed in an attempt 

to reconstruct the cloud features ·based on new .ideas and assumptions. 

2. TILT OF STORM AXIS 

The three-dimensional tilt vector of a rotating thunderstorm can be determined 

by talcing cloud pictures from different directions. An aircraft platform provides us 

with quickly changing views which can be used in the tilt computations. 

The true tilt is defined as the direction of the cloud axis measured from the 

local vertical through the cloud. The tilt measured on a horizontal image may be 

called the apparent tilt, which is different from the true tilt. They can be related by 

an equation 

tan T 0 = tan T sin ( a - {3 ) (1) 

where T 0 is the apparent tilt, T is the true tilt, a is the azimuth of the cloud axis, 

and {3 is the azimuth of the cloud viewed from the aircraft. 

The apparent tilt of the rotating thunderstorm of April 21, 1961, measured 

from six directions, is plotted in Fig. 1 as a function of the cloud azimuth {3 • As 
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Fig. 1. Variation in the apparent tilt of a rotating thunderstorm. 
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shown in Eq. ( 1 ), the apparent tilt coincides with the true tilt when a - f3 = 90° . In 

this case, the azimuth of the cloud was 0°when the apparent tilt reached the maximum 

value. This means that the cloud was tilted due eastward. 

The variation of the apparent tilt due to the change in the viewing .direction is 

shown in Figs. 2 and 3. Fig. 2 represents a view of the cloud toward the 43° azimuth; 

Fig. 2. A view toward the 43° azimuth. 

Fig. 3. A-view toward the 00° azimuth or due north. 
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the apparent tilt is 21°. The cloud shows a cyclonic rotation at least near the cloud 

base. Fig. 3 is a view of the cloud with a 00°azimuth when the apparent tilt reached 

the maximum value of 33°. These figures clearly show the variation in the cloud tilt. 

The true tilt of 31° was obtained after smoothing the six values in Fig. 1. 

3. ENVIRONMENTAL WINDS 

The environmental flow must be known accurately in order to interpret the 

reasons for a tilt of 31°. This value appears to be rather large for such a large 

rotating thunderstorm. Unfortunately, no radiosonde station was located close enough 

to permit us to estimate the environmental wind from data of a single station. In order 

to estimate the best possible upper winds in the immediate vicinity of the cloud, a 

6-layer analysis was performed as shown in Fig. 4. 

The 850-mb wind at the cloud location was estimated to be 220° -32 kt. The 

flow at this level appears to be rather straight. As the height increases to 700 mb, 

the environmental flow started showing a definite anticyclonic curvature. The wind 

speed increased toward the north, resulting in a definite anticyelonic vorticity around 

the cloud. The 700 mb flow was 240 ° -40 kt. 

At 500 mb, the flow became straight again with the velocity 250° -50 kt. At 

this level the streamlines diverged with a decreasing wind speed toward the east. A 

275° -75 kt wind is seen at 300 mb where a definite anticyclonic flow is apparent. A 

jetstream flow was located near the 200 mb level with the 280° -105 kt wind. The jet 

axis was, however, seen far to the south, over central Oklahoma. The 100 mb level 

is located above the level of the maximum wind. At this level the wind speed decreased 

to only 55 kt from the west. 

The environmental flow determined through the mandatory-level analyses · is 

put together in the hodograph of Fig. 5. The surface, 900-mb, and 400-mb winds 

were estimated from other sources . Tue effective inflow wind is approximately 

190° -40 kt located within a 3000-ft layer above the surface. Tue mean wind averaged 

between the cloud base at 4000 ft MSL and the 300 mb level was 240° -45 kt, and the 

cloud motion estimated to be 270° -22 kt was 30° to the right of the mean wind. This 

· cloud was certainly a right-deviating storm. For further definition refer to Browning 

(1965) and Fujita (1965). 
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Fig. 4. Multi-level analysis of wind and temperature fields around the rotating 
thunderstorm of April 21, 1961 . The map time is 1800 CST, when the 
.storm was in the mature stage. Hourly surface maps within the boxed 
area appear in Fig. 8. 
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Fig. 5. Hodograph of environmental winds aloft. 

4. SURFACE PARAMETERS 

The rotating cloud of April 21, 1961 was isolated,· while developing very 

rapidly. The cloud was located near the north end of a warm tongue (see Fig. 6) 

accompanied by a well-defined moist tongue (see Fig. 7). When such a synoptic 

situation arises, it is usual to observe a rapid development of thunderstorms in lines. 

Fortunately, an isolated thunderstorm formed and started rotating shortly afterward. 

Such a development gave us a golden opportunity for the measurements including 

multi-directional photographiC work. Shown in Fig. 8 are the hourly surface charts 

including winds, isobars, and stream lines . Note that wind barbs are plotted after 

doubling the speed; that is, one full barb represents a 5-kt wind. Radar echoes are 

shown in painted areas. In fact, PPI images from Oklahoma City, Wichita, and 

Kansas City were used in composite presentations. 

A very interesting and important aspect of the storm formation is the existence 

of a mesoscale field of cyclonic vorticity. At 1600 CST when the cloud just started 

to precipitate, a significant vorticity and convergence field was in existence. The 

1008-mb isobar shows a well defined pressure "pocket". Within one hour, the 
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pressure pocket deepened considerably, accompanied by a cyclonic flow. The develop­

ment of a m esocyclone is apparent. The cloud indicated by letter "A" has been 

growing within the rotating wind field. There were no thunders torm developments in 

the vicinity of this cloud. 

At 1800, a sudden development of a squall line started to the southwest of the 

rotating thunderstorm. The development of the line was very fast, thus changing 

into a full-grown squall line by 1900 CST. As the squall line developed, the isolated 

cloud "A" weakened very rapidly. The 1900 CST map reveals the major squall- line 

activities accompanied by a s ignificant convergence _extending 300 miles. 

This sequence of s urface analysis shows that a rotating thunders torm developed 

in an area of significant vorticity and convergence. A favorable situation, such as 

this case, is rather rare because activities usually start in the form of a line, rather 

than an isolated convection. Moreover, a chance of sending aircraft to such an 

activity area is often rare, if not remote. The situation used and reported herein 

occurred in April 1961, about one year after TIROS I. In vi ew of the latest development 

••• . . 

Fig. 8 . Hourly s urface maps, 1600-1900 CST, April 21, 1961. 
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of ATS and SMS geostationary satellites, it is expected that research airc;r.-aft can be 

sent to the key spot prior to the development of a rotating cloud. 

5. CIRCULATION AROUND IBE CLOUD 

It is quite unusual to find airborne wind measurement around a rotating cloud. 

Fortunately, two airplanes were performing research flights beneath and around the 

cloud under discussion. A B-57, at 45, 000 ft, was also in the research mission. How­

ever, the wind data were found to be misleading due to an instrument malfunction. For 

further detail, refer to Fujita and Arnold (1963). 

A low-level flight, to obtain Fig. 9, was made by a B-26 with Dr. Chester W. 

Newton on board. The distribution of 20,000 ft winds presented in Fig. 10 was obtained 

by the Weather Bureau's DC-6 with Fujita on board. These two charts are the re-analyses 

of the two- layer flow charts appearing in the original article cited above. 

In computing the circulation, both north-:-south and east-west lines were drawn 

through the estimated center of the cloud. A system of polar coordinates with 10-km 

ranges and 10-degree azimuths was used to compute the circulation from 

. 1360 r = · 
0 

v cos e rd¢ 

where r is the circulation around a circle of radius r. , V. is the wind velocity at 

coordinates r , ¢ . To compute the circul~tion by adding the values for each 10-degree 

arc, the equation was changed into 

n = 36 

r = 
.,, r 
1s ·L 

n = I 

where V n denotes the wind speed at the n th point and . 8 n is the crossing angle. 

Such a calculation is very s ens itive to the accuracy and smoothing of the field 

of motion, because the crossing angle reverses the s ign of the tangential wind. In 

order to evaluate the va lidity of the calculation, the circulation was divided into 

positive and negative parts, 
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where r is the contribution of all the positive tangential velocities while r is 

that of all the negative tangential velocities. Since the total circulation is the difference 

of the absolute vaiues of r +and r-' the accuracy of the total circulation should be 

judged by the individual quantities. 

For this purpose the positive and negative circulations are tabulated hereunder. 

Table I reveals that the circulation at 3000 ft is not a small dlfference of large quantities; 

hence this calculation of r should be accurate. The positive part appears to be more 

than twice the negative part. The cloud, therefore, must be collecting the cyclonic 

circulation at the inflow level in order to maintain ·its rotation. 

Table 1. Circulation at 3,000 ft . Unit in 1000 k m
2 

per hour_. 

Radius (km) ·o 1 0 20 30 4 0 50 60 70 80 

Positive f 0 +l. 1 8 +2 . 88 +4.61 + 6. 13 + 7.47 +8 . 72 +9.82 +10.91 

Nega tive 0 -0 . 52 -1.18 - 1. 78 -2.15 - 2 . 64 -3.12 -:3 .60 - 4 . 02 

Tota l r 0 +0 . 66 + l. 70 + 2.83 +3.98 +4.83 +5.60 +6 . 22 + 6 . 8 9 

-rrr- Unknown 2.27 2 . 44 2.59 2.85 2.83 2.79 2. 72 2 . 7 2 

The circulation at the higher level may be larger or smaller than that at the 

3, 000 ft level. If .the upper layer is resisting the cloud rotation through viscous 

coupling, the circulation will decrease upward. If the cloud is fed its rotation from 

the higher level , while the lower level acts as dissi~ting media, the circula tion will 

increase upward. Consequently, the evaluation of the ~irculation a t 20, 000 ft is of 

extreme interest. 

Table 2. Circul ati on at 20,000 ft . Unit in 1000 km
2 

per hour . 

Radius (kml 0 10 20 30 40 50 60 70 80 

Positive f 0 +2.12 +4.42 +6 . 25 +7 . 97 +9.3 5 +10 . 97 +1 2 . 40 +14 . 05 

Negat i ve f 0 -1. 74 - 3.74 - 5.41 -6 . 82 - 8.26 - 9.76 -11. 36 -12 . 80 

Total f 0 +0.38 +0. 6 8 +0 . 84 +l.15 +1.09 + 1.21 + 1. 04 + 1. 25 

-r+;r - Unknown 1 . 22 1. 18 1 . 15 1.17 1.13 1.12 1.09 1.09 
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The nature of the circulation at 20,000 ft appears to be quite different from 

that at 3,000 ft. There, the absolute values of positive and negative circulations are 

very close to each other, especially when the distance from the cloud is large. This 

would mean that the cloud is losing its circulation against the irrotational flow. Since 

the absolute ratio of the circulations is close to 1. 00 the accuracy of the computed 

values could be low for large radii. 

The values of the circulation in, Tables l and 2 ar~ plotted in Fig . . 11. It-is 

obvious that the circulation around the cloud at all distances up to 80 km decreases 

rapidly as the height increases to the 20, 000-ft level. 

The fact that the circulation increases outward at the 3, 000-ft level implies 

that the inflow field is rotational. Thus the converging air will be maintaining the 

rotation despite the fact that the frictional dissipation does exist. At the 20, 000-ft 

level, however, there is no rotation within the basic flow in which the cloud is imbedded. 

The circulation beyond the 40-km radius remains practically the sam:e, meaning that 

no vorticity exists in the distant environment. 

Km'l hr 
8000.--~~~~~~~~~~~~~~~~~~~~~---, 

Fig. 11. Circulation around the rotating thunderstorm of 
April 21, 1961, at the 3,000 and 20,000 ft levels. 
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6. TEMPERATURE OF CLOUD 

Since the strong echo region of the rotating cloud of April 21, 1961 was not 

penetrated by any research aircraft, it is very difficult to establish the in- cloud 

temperature through direct measurements . 

One of the indirect means is to assume the moist-adiabatic ascent without 

entrairunent. Such an assumption is entirely wrong for small cumulus-type clouds . 

For a rotating thunderstorm of this size, however, the no- entrairunent assumption is 

not too far from being realistic, because the entrainment is in the order of several 

per cent. 

The moist adiabat of the incloud updraft can be determined from the air 

temperature and the dew-point temperature of the inflow air. Figures 6 and 7 are, 

thus , used to obtain 

Inflow air temperature ......... 75°F (24°C) 
Inflow dew-point temperattire . . . 65 ° F ( 18 ° C) 
Station pressure . . . . . . . . . . . . . . . 950 mb 

When the inflow air is lifted adiabatically , condensation will take place at the 900-mb 

level. The temperature distributions computed from the moist-adiabatic assumption 

and the environmental temperature from Fig. 4 are given in Table 3. 

Table 3. Vertical distribution of in-cloud and envirorunental temperature. Tempera-
ture di:ff~rence denotes the in-cloud temperature less the environmental temperature. 

Height Pressure In-cloud Temp. Env .. T~mp. Difference 

SFC 980 mb +23. 7° c --
lkm 900 +17.0°C +19. 0 -2 . 0°C 
2 810 +12. 7 +13. 0 -0. 3 
3 710 + 7 . 8 + 5. 9 +1 . 9 
4 630 + 2.6 - 0 . 3 +2.9 
5 560 ... 2 .• 7 - 6. 7 +4. 0 
6 490 .. 8. 5 -12.8 +4.3 
7 430 -14.8 -20.4 +5.6 
8 370 -23.0 -29. 0 +6 . 0 
9 320 -31. 0 -37. 7 +6. 7 

10 280 -40.0 -47.2 +7.2 
11 240 -49.2 -54. 0 +4.8 
12 205 -58 . 6 -55. 7 -2.9 
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Fig. 12. Vertical distribution of temperature. In-cloud temperatures 
were computed from the moist adiabat. 

A schematic diagram of the rotating cloud and the temperature distribution is shown 

in Fig. 12. The temperature difference, which is an indicator of the buoyancy, 

appears to be negative to about the 2-km level. Such negative buoyancy is a common 

feature of large convective clouds over the Midwest. 

The updraft in its first phase will have to receive the dynamical forces 

necessary to penetrate through the layer of negative buoyancy. One of the forces is 

provided by frictional convergence within the mesoscale pressure field, which may be 

called the pressure pocket. Another possible force is the vertical gradient of the 

non-hydrostatic pressure created by the rising mass of the rotating cloud. 

The hen-and-egg problem exists when the non-hydrostatic pressure is examined 

in detail. In reality, however, the frictional convergence is the initial force giving 

rise to the formation of a group of small convective clouds within the pressure pocket. 

When and if these small clouds amalgamate into a large,ta.11 cloud, the upper-level 

buoyancy will result in a rriass deficit inside the lower parts of the cloud. The deficit 

naturally results in the vertical and horizontal gradient of the non-hydrostatic pressure. 

14 



7. CONCLUSIONS 

Rotating thunderstorms have been thought to be a rar.e form of severe convec­

tion. Recent studies indicate, however, that thunderstorms as a whole, or a small 

portion thereof, rotate more often than one would expect. 

Dynamical and thermodynamical aspects of thunderstorms in rotation must be 

studied in detail. An important aspect of this investigation is the tilt of the axis of 

rotation which has been assumed to be vertical for most practical purposes. The 

evidence of tilt as reported in this paper is useful in developing a physical model of a 

rotating thunderstorm imbedded inside a' veering and shearing wind environment. 

Meanwhile, intensive observations and measurements should be encouraged in an 

attempt to learn more about the nature of these rotating thunderstorms. 

Acknowledgement: The author is grateful to Dr. Robert C. Costen of NASA Langley 
Research Center for his suggestions in completing this research. 
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