A SITE-SPECIFIC EVALUATION OF TORNADO AND HIGH-WIND RISKS AT WEST VALLEY SITE, NEW YORK

by
T. Theodore Fujita; Jaime J. Tecson and Neil J. Levine The University of Chicago

SMRP Research Paper No. 178
November 1979

Research was performed under the sponsorship of NRC under Contract No. 04-74-239

A SITE-SPECIFIC EVALUATION OF TORNADO AND HIGH-WIND RISKS
 AT WEST VALLEY SITE, NEW YORK

by

T. Theodore Fujita, Jaime J. Tecson and Neil J. Levine The University of Chicago

A. GEOGRAPHIC LOCATION

The facility at West Valley site, New York, is located at $42^{\circ} 34^{\prime} \mathrm{N}$ and $78^{\circ} 47^{\prime} \mathrm{W}$ at an elevation of 1325 ft . The site is 15 miles southeast of Lake Erie and 20 miles south of Buffalo, New York (see Figure A.1).

West Valley site is nestled on the northern slope of a large hill 1550 ft high adjacent to a prominent ridge as shown in Figure A. 2. This ridge, which is situated immediately to the northeast of the West Valley site, is the dominant feature of the ambient topography, attaining a maximum elevation of 1750 ft and extending for 15 miles towards the northwest and 20 miles towards the southeast with respect to the West Valley site. Smaller ridges, consistently oriented from the northwest to the southeast, appear as one continues northeastward.

Isolated peaks of higher altitudes appear as one proceeds towards the southwest. These peaks are not broad enough to impede southwesterly or westerly flow towards the site. The hill on which the West Valley site is separated from the ridge to the northeast by a relatively low channel, through which the South Branch Bighteenmile Creek flows.

All topographic features increase in height as one travels southeastward, towards inland New Yqric. A gradual declivity extends to the northwest, towards the shores of Lake Erie.

Figure A. 1 West Valley site, New York, and vicinity. The nearest climatological station is located 20 miles north of the site at the city of Buffalo. The wind rose depicts only the most prevalent directions of high winds, as the percentage of high winds corresponding to the remaining compass points are much too low to be shown in the scale.

B. HIGH-WIND PROBABILITIES

Owing to the absence of recorded data for the West Valley site itself, data for the city of Buffalo, New York, was utilized. Monthly "fastest-mile" windspeeds and directions were collected for the period January 1950 - December 1978, inclusive. No wind directions were reported for the months of April and May, 1973.

As shown in Table B.1, the dominant direction of high wind is from the southwest (66\%) and the west (25\%). This is to be expected due
to the orientation of Lake Erie, which offers little or no obstruction to the southwesterly flow in the vicinity of Buffalo. It is assumed that this data provides an adequate representation of the West Valley winds, with only a minimal margin of error.

Figure A. 2 Immediate topography of the West Valley site, New York. Circles of 5 and 10 mile radii are drawn. The contour interval is 200 feet.

REDUCTION OF WINDSPEEES TO $10-\mathrm{m}$ AGL
Since the wind data at Buffalo, New York, were measured at various elevations, it is necessary to reduce the windspeeds to the common height of $10-\mathrm{m}$ (32.8 ft) AGL.

During the 29-year period (1950-1978), the height of the anemometer changed from 96 ft to 20 ft in 1959, and later raised to the

Table B. 1 Frequencies of the direction of the fastest-mile wind of the month at Buffalo, New York. Based on 346 -month data in the period 1950-1978.

Wind Directions	N	NE	E	SE	S	SW	W	NW
Frequencies	2	6	3	2	9	227	85	12
(in \%)	(1)	(1)	(1)	(1)	(2)	(66)	(25)	(3)

10-m level in 1977. Windspeeds measured at the earlier heights were reduced to that at the $10-\mathrm{m}$ height by assuming a commonly-used power function:

$$
\begin{equation*}
W_{h}=W_{10} h^{n} \tag{B.1}
\end{equation*}
$$

where $h=H / 10 m$ is the non-dimensional normalized height, W_{h} is the windspeed at h, W_{10}, the windspeed at $10-\mathrm{m} A G L$, and n, the power. As shown in Table B.2, the mean peak windspeed (fastest-mile) of the month decreased from 46.9 mph to 36.3 mph as the anemometer height lowered from 96 to 20 ft AGL. Recorded values at $10-\mathrm{m}$ level indicated a mean peak windspeed of 35.5 mph .

Table B. 2 Mean values of the fastest-mile windspeed of the month measured at different heights AGI. Based on the 348 -month data at Buffalo, New York.

Periods	Jan 1950- Mar 1959	Apr 1959- Mar 1977	Apr 1977- Dec 1978
Anemometer heights (ft)	96	20	33
Mean fastest mile (mph)	46.9	36.3	35.5

Figure B. 1 shows the anemometer height against mean windspeed plotted on semi-log coordinates. The plotted values in Table B. 2 are approximated as a linear distribution and the slope of the line is used to obtain the power n. The slope suggests that n is approximately $1 / 6$. The value 0.165 is used in the computation. A parallel slope, if drawn passing through the $10-\mathrm{m}$ height point, gives the same value of n .

Figure B. 1 Determination of the power n applicable to Buffalo, New York. The mean peak windspeed changed from 46.9 mph to 36.3 mph when the anemometer height reduced from 96 to $20 \mathrm{ft} \mathrm{AGI}$.

The equation for windspeed reduction used in this study is the inverse of Eq. (B.1) or

$$
\begin{equation*}
W_{10}=W_{h} h^{-n} \tag{B.2}
\end{equation*}
$$

where W_{h} is the anemometer windspeed measured at the normalized height, h.

The correction factors to be applied to the Buffalo winds are given in Table B.3. The values of 0.84 and 1.09 , when multiplied by windspeeds measured at heights of 96 ft and 20 ft respectively, convert all measured windspeeds into the windspeeds that would have been measured had the Buffalo anemometer been fixed at a constant $10-\mathrm{m}$ height during the entire 29 year period.

SEASONAL VARIATION OF PEAR SPEEDS BY MONTH were determined after adjusting all windspeeds to the $10-\mathrm{m}$ AGL height. Table B. 4 and Figure B. 2 show the seasonal variation of the fastest-mile winds for Buffalo. The fastest winds occur during the winter and early spring months; the lowest winds occur during the summer, as the mean atmospheric flow moves north into Canada.

Table B. 3 Correction factors for reducing peak windspeeds to $10-\mathrm{m}$ height AGI for Buffalo, New York. ($n=1 / 6$ estimated as 0.165)

Periods	Jan 1950-	Apr 1959-	Apr 1977-
	Mar 1959	Mar 1977	Dec 1978
Normalized heights (h)	2.93	0.61	1.00
Corrections with $\mathrm{n}=1 / 6$	0.84	1.09	1.00

Table B. 4 Seasonal variation of the maximum, mean, and minimum values of peak windspeed of the month. Based on the 348 -month data in 1950-1978 at Buffalo, New York. Windspeeds, in mph, are reduced to the $10-\mathrm{m}$ height AGL.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Mean	45.8	41.4	43.7	41.0	37.6	36.3	35.7	33.7	36.1	38.1	40.4	41.9	--
Maximum	76	68	61	56	53	47	51	51	50	53	55	61	76
Minimum	29	26	28	32	29	26	29	26	27	27	32	33	26

Figure B. 2 Seasonal variation of the $10-\mathrm{m}$ AGI winds at Buffalo, New York. (Data are from Table B.4).

Table B. 5 shows the long-term variation of high winds at Buffalo, New York. All winds have been reduced to the common height of 10 meters.

Table B. 5 Long-term variation of high winds at Buffalo, New York. (Based on 348-month data, 1950-1978).

Year	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959
Mean	43.1	40.0	35.5	40.1	40.6	36.2	39.4	38.3	39.2	44.7
Maximum	76	55	44	58	53	54	48	56	50	57
Minimum	29	29	27	27	29	26	29	26	28	33
Year	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
Mean	39.7	38.8	37.4	40.9	40.7	43.8	39.2	39.9	36.7	38.2
Maximum	51	47	54	61	61	56	47	68	47	51
Minimum	27	32	32	32	33	35	33	32	32	32
Year	1970	1971	1972	1973	1974	1975	1976	1977	1978	
Mean	36.6	40.2	38.8	36.1	41.7	40.0	40.5	37.9	35.7	
Maximum	45	61	56	41	51	51	54	54	60	
Minimum	32	32	32	32	28	31	32	30	26	

FREQUENCIES OF FASTEST-MILE WINDSPEED OF MONTH AND YEAR can be used in calculating the occurrence probabilities of specific windspeeds. Table B. 6 shows the individual and cumulative frequencies of the fastestmile wind of the month, for the 348 -month period; Table B. 7 shows the individual and cumulative frequencies of the fastest-mile wind of the year, for the 29-year period. Data is based on NOAA's "Climatological Data" publication.

Table B. 6 Cumulative frequencies of the fastest-mile windspped of the month at Buffalo, New York for the 348 month period 1950-1978. Windspeeds are reduced to the height of $10-\mathrm{m}$ AGL.

Fastest mile	20	21	22	23	24	25	26	27	28	29
Individual	--	--	--	--	--	-	3	3	2	8
Cumulative	348	348	348	348	348	348	348	345	342	340
Fastest mile	30	31	32	33	34	35	36	37	38	39
Individual	9	1	41	16	20	39	9	23	14	25
Cumulative	332	323	322	281	265	245	206	197	174	160
Fastest mile	40	41	42	43	44	45	46	47	48	49
Individual	5	28	3	4	10	14	6	19	3	4
Cumulative	135	130	102	99	95	85	71	65	46	43
Fastest mile	50	51	52	53	54	55	56	57	58	59
Individual	4	13	--	2	4	3	4	1	1	--
Cumulative	39	35	22	22	20	16	13	9	8	7
Fastest mile	60	61	62	63	64	65	66	67	68	69
Individual	1	4	--	--	--	--	--	--	1	--
Cumulative	7	6	2	2	2	2	2	2	2	1
Fastest mile	70	71	72	73	74	75	76	77	78	79
Individual	-2	--	--	--	--	--	1	--	--	--
Cumulative	1	1	1	1	1	1	1	0	0	0

The probability of any specific "windspeed month" (a month in which a specific maximum windspeed is attained, disregarding the particular day of the month that the speed is attained) occurring in a year can now be computed. The method is illustrated in detail in Appendix 1. Essentially, the probability for any chosen windspeed is merely the cumulative frequency corresponding to that windspeed divided by 29. In terms of probability, the calculated quotient represents the number of months out of any year in the future that one can expect the chosen windspeed
to occur. The highest possible value, therefore, is twelve; every month out of the year will register the chosen windspeed. A value of zero is impossible, of course, as there is always some chance that any windspeed, no matter how huge, will occur. Figure B. 3 shows the probability curves, graphed as a function of windspeed.

The probability of any windspeed year occurring can be computed directly from Table B.7. Each cumulative frequency is again divided by 29. For probabilities below 0.1, the year-graph and month-graph are nearly identical, becoming increasingly identical at smaller probabilities.

Table B. 7 Cumulative frequencies of the fastest mile windspeed of the year at Buffalo, New York. Winds are reduced to $10-\mathrm{m}$ AGL.

Fastest mile	40	41	42	43	44	45	46	47	48	49
Individual	--	1	--	--	1	1	--	3	1	--
Cumulative	29	29	28	28	28	27	26	26	23	22
Fastest mile	50	51	52	53	54	55	56	57	58	59
Individual	1	4	--	1	4	1	3	1	1	--
Cumulative	22	21	17	17	16	12	11	8	7	6
Fastest mile	60	61	62	63	64	65	66	67	68	69
Individual	1	3	--	--	--	--	--	--	1	--
Cumulative	6	5	2	2	2	2	2	2	2	1
Fastest mile	70	71	72	73	74	75	76	77	78	79
Individual	--	--	--	--	--	--	1	--	--	--
Cumulative	1	1	1	1	1	1	1	0	0	0

It will be noted that the probability curve of Figure B. 3 approaches a straight line at low probabilities. If this straight-line portion of the curve is extrapolated, the equation of its graph is

$$
\begin{equation*}
W_{p}=W_{0.1}-\left(W_{0.01}-W_{0.1}\right)(1+\log P) \tag{B.3}
\end{equation*}
$$

with W_{p} denoting the windspeed corresponding to probability $P, W_{0.1}$ and $W_{0.01}$ denoting the windspeeds corresponding to probabilities 0.1 and 0.01 , respectively. It will be seen that $W_{0.1}$ is roughly equivalent to 67 mph , and $W_{0.01}$ corresponds to 82 mph .

Figure B. 3 Probabilities of fastest-mile windspeed of the month and the year. Windspeed probabilities at low probabilities were obtained by extrapolating the probability of the peak speed of the month.

The equation of probability then becomes

$$
\begin{equation*}
W_{p}=67-15(1+\log P) \text { fastest mile } \tag{B.4}
\end{equation*}
$$

where W_{p} denotes fastest mile.

Table B. 8 shows the correlation between windspeed and probability as a function of probability itself. The information can be interpreted as expressing the maximum wind that can be expected for any length of time, where time is the reciprocal of the probability corresponding to the windspeed in question. For example, the maximum wind that can be
expected over a ten-year span at the West Valley site is 67 mph ; over 100 years, 82 mph ; over 1000 years, 97 mph . It is important to note that these values are for straight-line winds only; the chance of a 200 mph straight-line wind is extremely miniscule. However, such a wind may be generated by tornado; hence, the probability of a tornado striking the West Valley site must therefore be computed.

Table B. 8 Fastest-mile windspeeds at Buffalo, New York, given as a function of occurrence probabilities.

Probabilities	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6} year
Fastest-mile	66.8	82.0	97.2	112.4	127.6	142.8 mph

C. TORNADO PROBABILITTIES

In order to assess the probability of a tornado striking the West Valley site, the physical environment of the site and its vicinity must be precisely analyzed. For this purpose, the region within a 100mile radius of the site was partitioned into sub-boxes having dimensions of exactly 15^{\prime} latitude by 15^{\prime} longitude. These sub-boxes, as shown in Figure C.1, were numbered from 1 to 151.

Figure C. 2 shows the cumulative path lengths, in miles for each sub-box, of all tornadoes occurring during the period 1916-1977 as taken from the DAPPLE Tornado Tape (1978). The probability of a tornado occurring in a box which as been struck often in the past is greater than that of a box which has been relatively tornado-free.

This information was then used to compute tornado probabilities under the DAPPLE method (Abbey, 1976; Abbey and Fujita, (1975, 1979)), explained in detail in Appendix 4. Under this method, each sub-box was analyzed with regards to linear distance from the West Valley site, maximum elevation, latitude, land-water area, and population as follows:

Figure C. 1 Identification numbers of the sub-boxes (15^{\prime} lat. by 15^{\prime} long.) within a 100 -mile range of the West Valley site, New York. The site is located in sub-box No. 73. Shaded areas indicate elevations at and above 2000 feet.

DISTANCE FUNCTION, $F(D)$: Computed from Table 2.1 (Appendix 2), with $m=0.5$. Added weight is placed on sub-boxes of close proximity to the West Valley site, while less weight on sub-boxes farther away.

HEIGHT FUNCTION, $F(\Delta H)$: Computed from Table 2.2 (Appendix 2). More weight is placed on a sub-box whose maximum elevation most closely matches that of the West Valley site. The function dampens the effect
of sub-boxes containing mountains, in which a tornado is assumed not likely to occur. It will be noted that the values of the height function for nearly all sub-boxes is identically one; this is due to the relative homogeneity of the West Valley topography.

Figure C. 2 Path lengths (in miles) of all tornadoes in each sub-box within a 100 -mile range of the West Valley site, New York.

LATITUDE FACTOR, C_{ϕ} : Computed from Table 2.3 (Appendix 2). Due to the gradual sonvergence of meridians as one approaches the north pole, each sub-box hàs a slightly smaller area than its neighbor immediately to the south. Therefore, southern sub-boxes stretch over a wider region and are consequently responsible for more area than the northern sub-boxes. Southern sub-boxes must be issued more weight.

POPULATION FACTOR, C_{p} : Assumed to be identically one for each sub-box. The factor is designed to decrease the effect of any sub-box which is sparsely populated, as it is then difficult, if not impossible, to accurately determine tornado paths through such a region. Thousands of people, however, live in the West Valley site vicinity and the factor is not needed for this locale. Therefore, each sub-box is weighted equally.

LAND FACTOR, C_{L} : Designed to place more weight on any sub-box which encloses a large percentage of land as opposed to water. The factor is unnecessary for inland sub-boxes, but mandatory for sub-boxes enclosing a segment of coastline. Tornado statistics are not applicable for Lake Erie since, by definition, tornado only exist on land. Therefore, any tornado statistics related to a sub-box which contains 80% water is in reality statistics for the 20% land portion. This data must be suppressed. Sub-boxes entirely over water or entirely within Canada, where no tornado statistics is at present utilized, were assigned the value zero.

The ultimate goal is to multiply all five of the above factors and functions together to derive a unique weighting function, $\boldsymbol{\psi}$, for each sub-box. Values of the DAPPLE factors for each sub-box and the cor responding weighting function are computed in Table C.1.

The total tornado mileage was distributed into mileage of weak ($F 0+F 1$), strong ($F 2+F 3$), and violent (F4+F5) tornadoes; these values appear in Table C.1, along with the product of each of these values and the corresponding weighting function.

These products were subsequently totaled, then divided by the sum of all weighting functions to obtain values of weighted path lengths. These were then divided by the number of weighted years (see Appendix 3) to derive "length per year" values; which were then divided by the area of the sub-box to obtain values of length per year per square mile, \bar{I} (Area is in actuality the area of a sub-box at $37^{\circ} \mathrm{N}$; discrepancies due to latitudes of different sub-boxes are nullified by the latitude factor) Refer to Table C. 2.

Table C. 1 PARAMETERS FOR COMPUTING THE WEIGHTED PATH LENGTHS OF TORNADOES AT WEST VALLEY, NEW YORK.

Parameters are:- D, distance from site; $F(D)$, distance function with $m=0.5$; $F(\Delta H)$, height function; C_{L}, land factor; C_{ϕ}, latitude factor; ψ, weighting function; I_{w}, L_{s}, L_{v}, path lengths of weak, strong, and violent tornadoes; and $L_{w^{\prime}}^{\prime} L_{s}^{\prime}, I_{v}^{\prime}$, their weighted length, respectively. (The letter C, when used as an entry in the below chart, signifies that the sub-box in question contains Canadian land only; W signifies that the sub-box contains water only; CW signifies that the sub-box contains some combination of Canadian land and water.) D and I are expressed in miles.

Box	D	F(D)	$\mathrm{F}(\Delta \mathrm{H})$	C_{L}	C_{ϕ}	ψ	$\mathrm{L}_{\text {w }}$	L_{m}^{\prime}	L_{s}	L_{5}^{\prime}	L_{V}	L_{v}^{\prime}	Remarks
1	100	0.00				C							
2	95	0.28				C							
3	92	0.35				CW							
4	91	0.38				CW							
5	91	0.38				CW							
6	92	0.35				CW							
7	97	0.22				CW							
8	102	0.00				CW							
9	101	0.00				C							
10	92	0.35				C							
11	85	0.48				CW							
12	79	0.57				CW							
13	76	0.61				CW							
14	74	0.63				W							
15	74	0.63				W							
16	77	0.59				W							
17	80	0.56				W							
18	86	0.47				W							
19	94	0.31				W							
20	103	0.00				W							
21	98	0.18				C							
22	88	0.43				C							
23	79	0.57				CW							
24	71	0.66				CW							
25	63	0.74				${ }^{W}$							
26	58	0.78	1.00	0.05	0.92	0.04	0	--	0	--	0	--	
27	55	0.81	1.00	0.24	0.92	0.18	0	--	0	--	0	--	
28	57	0.79	1.00	0.46	0.92	0.33	0	--	0	--	0	--	
29	60	0.77	1.00	0.58	0.92	0.41	0	--	0	--	0	--	
30	65	0.72	1.00	0.54	0.92	0.36	0	--	0	--	0	--	
31	72	0.65	1.00	0.41	0.92	0.25	0	--	0	--	0	--	
32	81	0.54	1.00	0.17	0.92	0.08	0	--	0	--	0	--	
33	91	0.38	1.00	0.10	0.92	0.03	0	--	0	--	0	--	
34	101	0.00	1.00	0.15	0.92	0.00	0	--	0	--	0	--	

Box	D	$F(D)$	$\mathrm{F}(\Delta \mathrm{H})$	C_{L}	${ }^{C}$ ¢	ψ	$\mathrm{I}_{\text {w }}$	L_{w}^{\prime}	L_{3}	L_{8}^{\prime}	L_{v}	LV	Remarks
35	102	0.00				C							
36	89	0.41		-		C							
37	78	0.58				C							
38	68	0.69				C							
39	58	0.78				CW							
40	48	0.85				C							
41	42	0.89	1.00	1.00	0.92	0.82	1	0.89	0		0	--	Niagara Fall
42	38	0.91	1.00	1.00	0.92	0.84	2	1.82	2	1.82	0	--	
43	39	0.90	1.00	1.00	0.92	0.83	0	--	1	0.90	0	--	Lockport
44	44	0.88	1.00	1.00	0.92	0.81	1	0.88	0	--	0	--	
45	52	0.83	1.00	1.00	0.92	0.76	0	--	0	--	0	--	
46	59	0.77	1.00	1.00	0.92	0.71	0	--	7	5.39	0	--	
47	72	0.65	1.00	0.93	0.92	0.56	0	--	17	11.05	0	--	Rochester
48	81	0.54	1.00	1.00	0.92	0.50	0	--	0	--	0	--	
49	94	0.31	1.00	1.00	0.92	0.29	0	--	0	--	0	--	
50	97	0.22				C							
51	84	0.50				C							
52	72	0.65				CW							
53	60	0.77				CW							
54	48	0.85				CW							
55	37	0.91				CW							
56	27	0.95	1.00	0.53	0.92	0.46	0	--	0	--	0	--	
57	22	0.97	1.00	0.69	0.92	0.62	1	0.97	1	0.97	0	--	Buffalo
58	23	0.97	1.00	1.00	0.92	0.89	1	0.97	1	0.97	0	--	
59	30	0.94	1.00	1.00	0.92	0.86	0	--	0	--	0	--	
60	41	0.89	1.00	1.00	0.92	0.82	0	--	0	--	0	--	
61	52	0.83	1.00	1.00	0.92	0.76	0	--	0	1.48	0	--	
62	63	0.74	1.00	1.00	0.92	0.68	0	--	2	1.48	0	--	
63	75	0.62	1.00	1.00	0.92	0.57	0	--	0	--	0	--	
64	86	0.47	1.00	1.00	0.92	0.43	0	--	0	--	0	--	
65	99	0.13	1.00	1.00	0.92	0.12	0	--	0	--	0	--	
66	94	0.31				CW							
67	82	0.53				CW							
68	69	0.68				CW							
69	56	0.80				W							
70	43	0.88				W							
71	30	0.94	1.00	0.08	0.92	0.07	0	--	0	--	0	--	
72	18	0.98	1.00	0.39	0.92	0.35	0	--	0	--	0	--	
73	6	1.00	1.00	0.88	0.92	0.81	0	-	3	3.00	0	--	SITE
74	9	1.00	1.00	1.00	0.92	0.92	1	1.00	0	--	0	--	
75	21	0.98	1.00	1.00	0.92	0.90	0	--	8	7.84	0	--	
76	34	0.93	1.00	1.00	0.92	0.86	0	--	0	--	0	--	
77	47	0.86	1.00	1.00	0.92	0.79	0	--	0	--	0	--	.
78	90	0.40	1.00	1.00	0.92	0.37	1	0.40	0	0.66	0	--	
79	71	0.66	1.00	1.00	0.92	0.61	0	--	1	0.66	0	--	

--continued-- SUB-BOXES, 80 to 124

Box	D	$F(D)$	$F(\Delta H)$	C_{L}	${ }^{C}{ }_{\phi}$	ψ	L_{w}	L_{w}^{\prime}	L_{8}	I's	Lvor	Liv	Remarks
80	85	0.48	1.00	1.00	0.92	0.44	0	--	0	--	0	--	
81	98	0.18	1.00	1.00	0.92	0.17	1	0.18	0	--	0	--	
82	96	0.25				W							
83	83	0.51				W							
84	71	0.66				W							
85	58	0.78	1.00	0.05	0.93	0.04	0	--	0	--	0	--	
86	45	0.87	1.00	0.31	0.93	0.25	0	--	0	--	0	--	
87	33	0.93	1.00	0.75	0.93	0.65	0	--	3	2.79	0	--	Fredonia
88	22	0.97	1.00	1.00	0.93	0.90	0	--	4	3.88	0	--	
89	14	0.99	1.00	1.00	0.93	0.92	2	1.98	2	1.98	0	--	
90	16	0.99	1.00	1.00	0.93	0.92	2	1.98	15	14.85	0	--	
91	26	0.96	1.00	1.00	0.93	0.89	1	0.96	12	11.52	0	--	
92	36	0.92	1.00	1.00	0.93	0.86	0	--	3	2.76	0	--	
93	48	0.85	1.00	1.00	0.93	0.79	0	--	0	--	0	--	
94	61	0.76	1.00	1.00	0.93	0.71	0	--	0	--	0	--	Hornell
95	73	0.64	1.00	1.00	0.93	0.60	0	--	0	--	0	--	
96	86	0.47	1.00	1.00	0.93	0.44							
97	99	0.13	1.00	1.00	0.93	0.12	0	--	1	0.13	0	--	
98	100	0.00				W							
99	87	0.45	1.00	0.17	0.93	0.07	0	--	1	0.45	0	--	
100	75	0.62	1.00	0.36	0.93	0.21	1	0.62	0	--	0	--	Erie
101	64	0.73	1.00	0.88	0.93	0.60	0	--	0	--	0		
102	53	0.82	1.00	1.00	0.93	0.76	0	--	4	3.28	0	--	
103	43	0.88	1.00	1.00	0.93	0.82	1	0.88	8	7.04	0	--	
104	35	0.92	1.00	1.00	0.93	0.86	1	0.92	4	3.68	2	1.84	Jamestown
105	31	0.94	1.00	1.00	0.93	0.88	0	--	2	1.88	0	--	
106	32	0.94	1.00	1.00	0.93	0.87	1	0.94	1	0.94	0	--	
107	38	0.91	0.99	1.00	0.93	0.85	0	--	0	--	0	--	Olean
108	46	0.87	0.98	1.00	0.93	0.81	0	--	1	0.85	0	--	
109	56	0.80	0.99	1.00	0.93	0.64	0	--	0	--	0	--	
110	67	0.70	0.99	1.00	0.93	0.64	0	--	0	--	0	--	
111	79	0.57	1.00	1.00	0.93	0.53	0	--	0	--	0	--	
112	91	0.38	1.00	1.00	0.93	0.35	1	0.38	0	--	0	--	
113	95	0.28	1.00	0.97	0.93	0.25	0	--	4	1.12	0	--	
114	85	0.48	1.00	1.00	0.93	0.23	1	0.48	15	7.20	0	--	
115	74	0.63	1.00	1.00	0.93	0.59	0	--	15	9.45	0	--	
116	64	0.73	1.00	1.00	0.93	0.68	0	--	15	10.95	0	--	
117	56	0.80	1.00	1.00	0.93	0.74	1	0.80	0	--	0	--	
118	52	0.83	1.00	1.00	0.93	0.77	0	--	0	--.	0	--	
119	48	0.85	1.00	1.00	0.93	0.79	0	--	0	--	0	--	
120	49	0.85	0.99	1.00	0.93	0.78	0	--	1	0.85	6	5.10	
121	53	0.82	0.99	1.00	0.93	0.75	0	--	0	--	0	--	
122	60	0.77	0.99	1.00	0.93	0.71	3	2.29	0	--	0	--	
123	67	0.70	0.97	1.00	0.93	0.63	12	8.15	0	--	0	--	
124	77	0.59	0.98	1.00	0.93	0.54	0	--	0	--	0	--	

-- continued-- SUB-BOXES, 125 to 151

Box	D	F(D)	$\mathrm{F}\left(\Delta_{\mathrm{H}}\right)$	C_{L}	${ }^{\text {c }}$ ¢	ψ	L_{w}	$L_{\text {w }}^{\prime}$	$L_{\text {s }}$	I_{5}^{1}	L_{v}	$\mathrm{I}_{\text {v }}$	Remarks
125	88	0.43	1.00	1.00	0.93	0.40	0	--	0	--	0	--	
126	98	0.18	1.00	1.00	0.93	0.17	0	--	0	--	0	--	
127	95	0.28	1.00	1.00	0.93	0.26	1	0.28	13	3.64	0	--	
128	86	0.47	1.00	1.00	0.93	0.44	1	0.47	0	--	0	--	
129	79	0.57	1.00	1.00	0.93	0.53	1	0.57	0	--	0	--	
130	72	0.65	1.00	1.00	0.93	0.60	0	--	1	0.65	0	--	
131	68	0.69	1.00	1.00	0.93	0.64	1	0.69	0	--	0		
132	65	0.72	1.00	1.00	0.93	0.67	0	--	0	--	0	-	
133	67	0.70	1.00	1.00	0.93	0.65	0	--	0	--	0		
134	69	0.68	0.99	1.00	0.93	0.63	0	--	0	--	0	--	
135	74	0.63	0.99	1.00	0.93	0.58	0	--	1	0.84	0	--	
136	81	0.54	0.98	1.00	0.93	0.49	0	--	0		0		
137	88	0.43	1.00	1.00	0.93	0.40	2	0.86	2	0.86	0		
138	98	0.18	1.00	1.00	0.93	0.17	0	--	1	0.18	0		
139	100	0.00	1.00	1.00	0.94	0.00	0	--	0	--	0	--	
140	94	0.31	1.00	1.00	0.94	0.29	1	0.31	3	0.93	0	--	
141	88	0.43	1.00	1.00	0.94	0.40	0	--	0	--	0		
142	85	0.48	1.00	1.00	0.94	0.45	0	--	3	1.44	0		
143	82	0.53	1.00	1.00	0.94	0.50	4	2.12	0		0		
144	83	0.51	1.00	1.00	0.94	0.48	0	--	12	6.12	0		
145	85	0.48	0.99	1.00	0.94	0.45	0	--	0	--	0	--	
146	90	0.40	0.99	1.00	0.94	0.37	0	--	0	--	0	--	
147	96	0.25	1.00	1.00	0.94	0.24	6	1.50	1	0.25	0	--	
148	101	0.00	1.00	1.00	0.94	0.00	0	--	1	--	0		
149	100	0.00	1.00	1.00	0.94	0.00	0	--	0	--	0	--	
150	100	0.00	1.00	1.00	0.94	0.00	0	--	1	--	0	--	
151	102	0.00	1.00	1.00	0.94	0.00	1	--	0	--	0	--	
Total						54.56		34.29		133.62		6.94	

Table C. 2 Computation of \bar{I}, weighted path length for the site; $\overline{\bar{L}}$, length per year; and \bar{I}, length per year per area. L' denotes the weighted length in each sub-box and ΣL, the total L^{\prime} within a 100 -mile radius of West Valley site, New York.

	$\sum L^{\prime}$ (miles)	$\sum \psi$ $(--)$	$\overline{\mathrm{L}}$ (miles)	Weighted years	$\overline{\bar{L}}$ (mile$/ \mathrm{yr})$	$\overline{\mathrm{L}}$ (yr-mi)
Weak tornadoes	34.29	54.56	0.63	25.2	0.0250	0.000105
Strong tornadoes	133.62	54.56	2.45	36.0	0.0681	0.000285
Violent tornadoes	6.94	54.56	0.13	43.9	0.0030	0.000012

The tornado probability is computed by multiplying each I value by a corresponding DAPPLE value, DAPPLE being a function of both windspeed and F-scale. See Table C. 3 for calculated values.

Therefore, this table shows that one square-mile section of the West Valley site can expect a tornado within that one mile territory once in 10,000 years, at best. The time period increases for stronger tornadoes; a 300 mph tornado should occur once in $1 \frac{1}{2}$ billion years.

Table C. 3 Computation of tornado probabilities at West Valley site, New York. $10^{-4}, 10^{-5}$, etc., are expressed as $-4,-5$, etc. Based on DAPPLE tornado tape data, 1916-1977.

	50	100	150	200	250	300
WEAK TORNADOES						
DAPPLE	0.075	0.0014	0.000026	--	--	--
Probabilities	8.31-6	$1.47-7$	2.73-9	--	--	--
Probabilities	8.39-5	1.40-5	2.33-6	1.71-7	1.26-8	--
DAPPLE	0.47	0.15	0.043	0.0091	0.0009	0.00012
Probabilities	5.75-6	1.91-6	5.33-7	1.13-7	1.12-8	1.499
ALL TORNADOES Probabilities	9.82-5	1.60-5	2.86-6	2.84-7	2.35-8	$1.49-9$

Figure C. 3 is a graph of tornado probabilities and high-wind probabilities. This graph shows which of the two atmospheric features would have a greater chance of generating any arbitrary wind. For winds below 129 mph , a straight-line wind should be the generating factor.

This graph can be used to determine windspeeds as a function of probability. Table $C .4$ has been computed in this manner.

Figure C. 3 Probability vs. windspeed curves applicable to the West Valley site, New York. The maximum windspeed with 10^{-7} per year probability is 221 mph .

Table C. 4 Windspeeds of high winds (HWD) and tornadoes (TOR) corressponding to 10^{-1} through 10° per year probabilities at West Valley site, New York. Based on high wind data (1950-1978) and DAPPLE tornado tape data (1916-1977). $10^{-1}, 10^{-2}$, etc. are expressed as $-1,-2$, etc.

	Probabilities per year							
Log P	-1	-2	-3	-4	-5	-6	-7	-8
Storm types	HWD	HWD	HWD	HWD	HWD	TOR	TOR	TOR
Windspeeds	67	82	97	112	127	173	221	266

CONCLUSIONS
Straight-line winds are the governing factors in determining risks for probabilities of 10^{-5} or higher. At lower probabilities, tor nadoes are the principal agents for generating large windspeeds.

The windspeed corresponding to a 10^{-9} probability (or, the maximum windspeed which may be expected over a billion year period) is 309 mph . A windspeed of 266 mph corresponds to a 10^{-8} probability.

The probability of a tornado generating maximum winds of 50 mph is 10-4. In other words, a relatively weak tornado should occur in any chosen square-mile of the West Valley site only once in ten thousand years.

REFFERENGES

Abbey, R. F., Jr., (1976): Risk probabilities associated with tornado windspeeds. Proc. of Symposium on Tornadoes, Assessment of Knowledge and Implications for Man. Texas Tech. Univ., pp 197-236.
Abbey, R. F., Jr. and T. T. Fujita (1975): Use of tornado path lengths and gradations of damage to assess tornado intensity probabilities. Preprints of 9th Conf. on Severe Local Storms, pp 286-293.
Abbey, R. F., Jr. and T. T. Fujita (1979): The DAPPLE method for computing tornado hazard probabilities: Refinements and theoretical considerations. Preprints of 11th Conf. on Severe Local Storms, pp 241-248.
"Climatological Data" A NOAA publication. Published monthly with an Annual Summary. May be obtained from Environmental Data Service, National Climatic Center, Federal Building, Asheville, N.C. 28801.
DAPPLE Tornado Tape (1978): List of tornadoes 1916-1977. May be obtained from T. T. Fujita, The University of Chicago, Chicago, Illinois.

