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Tornado Occurrences related to Overshooting Cloud-Top Heights 
as determined from A TS Pictures 

T. Theodore Fujita 

Abstract 

A sequence of ATS III pictures including the development history of large 

anvil clouds near Salina, Kansas was enlarged by NASA into 8X negatives which were 

used to obtain the best quality prints by mixing scan lines in 8 steps to minimize 

checker-board patterns. These images resulted in the best possible resolution, 

permitting us to compute the heights of overshooting tops above environmental anvil 

levels based on cloud shadow relationships along with the techniques of lunar topo­

graphic mapping. Of 39 heights computed, 6 were within 15 miles of reported 

positions of 3 tornadoes. It was found that the tornado proximity tops were mostly 

less than 5000 ft, with one exception of 7, 000 ft, suggesting that tornadoes are most 

likely to occur when overshooting height decreases. 

In order to simulate surface vortices induced by cloud-scale rotation and 

updraft fields, a laboratory model was constructed. The model experiment has 

shown that the rotation or updraft field induces a surface vortex but their combination 

does prevent the formation of the surface vortex. This research leads to a conclusion 

that the determination of the cloud-top topography and its time variation is of extreme 

importance in predicting severe local storms for a period of 0 to 6 hours. 

1. INTRODUCTION 

Typical anvil clouds grow from the tops of tall convective clouds reaching or 

penetrating the tropopause where the combination of stable lapse rate and strong 

winds tend to spread hydrometeors in horizontal directions. Although an anvil 

spreading from an intense cell often grows upwind, its rapid growth toward the rela­

tive downwind direction is commonly observed in ATS picture sequences. 



Hydrometeors are transported upward inside strong updrafts which tend to 

overshoot beyond the crossover point at which the indraft and environmental tempera­

tures coincide. The height of the crossover point does not always coincide with that 

of the tropopause because the vertical distributions of the indraft and the environmental 

temperatures do result in the variation of the crossover point on both sides of the 

tropopause level. 

The air parcel rising through the cross over point is characterized by the 

neutral bouyancy as well as the vertical component of large momentum of indraft air. 

A process of "overshooting" takes place until the rising air reaches an equilibirium at 

some altitude above the crossover point, where the updraft parcels cease to rise. A 

dome protruding beyond the level of overall anvil will appear over the top of an over­

shooting updraft. Such a dome is called either "protruding top" or "overshooting top". 

Terrestrial photogrammetric analyses of Alberta hailstorms by Renick (1971) 

revealed the time variation of cloud-tower tops overshooting up to 3km (10, 000 ft) 

above the tropopause located at 12. 6 km (41 , 000 ft) MSL. Some tower tops had a 

maximum rate of rise of 20m sec-1 at the tropopause beyond which the rate decreased 

gradually. This study also revealed that the time between the tropopause crossing 

and the highest growth point of a tower top is only about 3 min. Shortly after reaching 

its highest growth point, each top subsided rather gradually. These evidences 

clearly indicate the rate of change in the overshooting height and its maximum height 

are closely related to the vertical motions taking place beneath the anvil cloud. 

Occurrences of both hailstorms and tornadoes are to be related to the heights 

of cloud tops. Despite such expectation, Lee (1971) found that the dome protrusion 

of 29 cases of tornado-producing thunderstorms varies from just above the level of 

the cirrus to 2. 5 km (8, 000 ft) above the cirrus, with a mean of 0 . 6km (2 , 000 ft). 

These heights were computed from RB-57 F pictures taken by horizon-to-horizon 

camera. 471 cases of thunderstorm tops over Oklahoma showed much larger varia­

tions in cloud-top heights with 1% probability for height range , 18. Okm (59 , 000 ft) or 
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higher; 43, 17. 0km (56,000ft)-17.9km; 103 , 16.0km (52,000ft)-16.9km, etc. 

Based on these results Lee concluded that he could not find practical means for 

identifying tornado-producing thunderstorms from RB-57 F traverses and subsequent 

photogrammetric computation. 

Bonner and Kemper (1971) reached a similar but slightly different conclusion 

through their statistical study of echo-top heights over the central, eastern, and 

southern U.S., in relation to tornado and hailstorm occurrences. Over the central 

U.S. , according to their statistics, both tornado and hail probabilities increase 

significantly when echo-top heights exceed the tropopause. Thereafter hail proba­

bility increases very rapidly with the echo-top height while tornado probability shows 

only a slight increase. This evidence implies that tornado occurrences are closely 

related to the tropopause penetration of echo tops but not to their excessive height 

above the tropopause. 

Tornado-producing thunderstorms are, thus, very unlikely to be characterized 

by excessive height of overshooting tops, at least during the stage of tornado forma 

tion. It would be important, therefore , to investigate the time variation of the cloud­

top topography of tornado-producing thunderstorms during their entire life history. 

2. ANVIL-TOP TOPOGRAPHY 

A detailed view of a thunderstorm with a circular anvil is presented in Fig. 1. 

The picture was taken from Apollo 9 while orbiting over Columbia on March 8, 1969. 

The diameter of the anvil was 75km (45 mi), characterized by an isolated overshooting 

top near the center of the anvil. The overshooting height above the environmental 

anvil can be computed from a 30° elevation angle of the sun at 1645 Local Standard 

Time when this picture was taken. The overshooting height, thus obtained, was 4. 3 km 

(14, 000 ft) with a 7. 5km (4. 7 mi) diameter of the protrusion dome. The anvil top 

around the overshooting top is not flat like a table top, instead a bumpy feature implies 

the past history of the thunderstorm activities. 

Growth of towering cumuli into anvil c louds takes place rather rapidly. As 

shown in Renie.k's (1971) hailstorm cases, a 20m sec- 1 , growth rate will increase 

the cloud-top height at the rate of 1. 2 km min - 1 , thus requiring only about 10 min to 

reach the tropopause. A series of side views of fast-growing towering Cu - Cb 
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Fig. 1. Apollo 9 photograph of an anvil top over Colombia, South 
America, March 8, 1969 

of April 21, 1961 as reported by Fujita and Arnold (1963) is reproduced in Fig. 2. 

The sequence was made from 16mm movie taken by a nose camera of RFF B-57 

aircraft. It is seen that both clouds B and D grew from Cu to Cb in 10 to 15 min. , 

suggesting that 3 to 5-min picture intervals are required for the purpose of 

investigating the growth mechanism of such clouds. These clouds developed into 

a rotating thunderstorm at 1749 CST, a picture of which was used as cover photograph 

of Bulletin of AMS, April 1965. A tornado from this cloud between 1800 and 1805 

left a 6-mile damage swath in eastern Kansas. The time between the towering Cu 
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Fig. 2. View of growing anvils of April 21, 1961. This 
one-minute sequence was drawn based on the time-laps e 
film taken by the nose camera of a B-57. Distance to 
the cloud varied from 150 miles to about 10 miles. 

stage, 1517 CST in Fig. 2 and the tornado touchdown at 1800 was 2 hr. and 43 min., 

suggesting that a continuous surveillance of the anvil-top topography is useful in 

understanding and predicting the behavior of tornado-producing thunderstorms. 

One of the best sequence of ATS III pictures showing time changes in the 

anvil-top topography was obtained by mixing lines of 8X enlargement pictures 
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produced by the Goddard Space Flight Center. Original 8X pictures are of wide scan 

bands, each of which was produced by repeating eight lines modulated by 4096 picture 

element pulses . Due to these eight repetitions, image elements appear to elongate 

vertically into rectangles with 2:1 side ratio, because the left-right picture-element 

pulses of 4096 are almost twice in number of the 2400 scan lines. In order to create 

a smoothed image by suppressing distinct scan bands , line-mixed images were pro­

duced simply by exposing a photographic paper eight times while shifting the paper as 

much as one scan-line distance after each exposure. 

Presented in Fig. 3 are ATS III pictures of anvil clouds of May 11-12, 1970 

near Salina, Kansas. These pictures, taken every 11 minutes, were gridded with 

0. 5 deg. longitudes and latitudes. During the picture sequence period of 2 hr 01 min, 

the solar elevation angle decreased from 30° to 8° at the anvils' location. . Corre­

sponding to this solar elevation angle the distance between the cloud and shadow points 

on the earth increased significantly from 2. 6 to 8. 2 times the cloud height. This 

means that the cloud height resolution increases several times when computed from 

the cloud-shadow distance. Various quantities were computed by rectifying each 

picture into a plan view with approximate cloud-top relief as shown in Figs. 4 - 15. 

The figure includes PP 1 echoes from Wichita, Kansas ( ICT) and Kansas City, 

Missouri (MKC) as well as their boundaries drawn in the rectified cloud map. The 

heights of overshooting tops above environmental anvil surface are given in feet, 

such as 2000, 4000, etc. 

At 2224, two small echoes, only a few miles across, are seen in the Wichita 

radar picture while corresponding clouds in the A TS picture covered 900 and 1, 100 

sq. km. By 2307 a bird-shaped echo developed near the center of the fast-growing 

anvil area covering 3 . 800 sq. km. There was no distinct shadow corresponding to 

the bird-shaped echo, while the small echo to the southwest was characterized by a 

distinct shadow. A tornado, 2320-25, touched down briefly near Westfall from the 

small echo while the bird-shaped echo, still maintaining its identity, produced no 

tornadoes. Thereafter the small echo started growing rapidly both in area and 

intensity, meanwhile the bird-shaped echo disintegrated gradually. 
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Fig. 3. ATS III view of growing anvils near Salina, Kansas. 
These 11-minute interval pictures were taken between 
2244Z, May 11 and 0045Z, May 12, 1970. 
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Fig. 4. ATS cloud patterns at 2244 GMT , May 11, 1970 and radar 
pictures from Wichita (left). Kansas City radar was not taking 
pictures because the clouds were too far from the station. 
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• GRI ATS 2256 (5 1) 
ICT RADAR 2255 
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•ow 97W ••• ... 

NO PICTURE 

AVAILABLE 

Fig. 5. AT S cloud patterns at 2256 GMT, May 11, 1970 and radar 
pictures from Wichita (left). Three small echoes were seen 
from Wichita. 
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•GR I ATS 2307 (52) 

• LNI( 
ICT RADAR 23 1 I 

.MKC RADAR ----
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ABOVE ANVIL CLOUD 

CNK • 

•TOP 
+ MKC 

+ICT 

98W 97W 96W ••w 

NO PICTURE 

AVAILABLE 

Fig. 6. ATS cloud patterns at 2307GMT, May 11 , 1970 and radar 
pictures from Wichita (left). A report of funnel cloud to the 
west of Assaria mus t be an error either in time or location. 
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Fig. 7 . ATS cloud patterns at 2318GMT , May 11 , 1970 and radar 
pictures from Wichita (left) and Kansas City, Missouri. 
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• GAi AT S 2329 (54 ) 
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ICT RADAR 2330 
MKC RADAR 2327 
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D1sr 
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..... 97W ..... ..... 

Fig. 8. ATS cloud patterns at 2329GMT, May 11, 1970 and radar 
pictures from Wichita (left) and Kansas City, Missouri. 
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OVERSHOOTING HEIGHT IN FEET 
ABOVE ANVIL/ CLOUD 

98W 

+ ICT 

•BIE 

97W 96W 

ATS 2340 (55) 
ICT RADAR 2341 

MKC RADAR --- -

•CHU 

90W 

Fig. 9. ATS cloud patterns at 2340 GMT, May 11, 1970 and radar 
pictures from Wichita (left) and Kansas City, Missouri. Gain 
of Kansas City radar was reduced. 
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• GA i AT S 23 5 I (56) 
ICT RADAR 2351 
MKC RADAR 2l5 1 

Fig. 10. ATS cloud patterns at 2351 GMT, May 11, 1970 and radar 
pictures from Wichita (left) and Kansas City, Missouri . 
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• GRI ATS 0002 (01) 
ICT RADAR 0001 

• t.HIC 
MICC RADAR 23~7 

+ICT 

98W 97W 

Fig. 11. ATS cloud patterns at 0002GMT, May 12, 1970 and radar 
pictures from Wichi ta (left) and Kansas City, Missouri . 
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98W 97W 

A T S 00 I 3 (02) 
ICT RADAR 

MKC RAOAR 00 12 

BUM 

96W 

Fig. 12. ATS cloud patterns at 0013GMT, May 12, 1970 and radar 
pictures from Wichita (left) and Kansas City, Missouri. 
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MKC RADAR 0023 

• STJ 

+ MKC 

•NUU 
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, 

Fig. 13. A TS cloud patterns at 0023 GMT, May 12, 1970 and radar 
pictures from Wichita (left) and Kansas City, Missouri . 

97- 17 



+ICT 

98W 97W ••w 

A T S 0034 (04) 
ICT RADAR 0034 
MKC RA DAR 0 0 34 

••w 

Fig. 14. ATS cloud patterns at 0034GMT, May 12, 1970 and radar 
pictures from Wichita (left) and Kansas City, Missouri. 
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• GAi ATS 0045 (05) 
ICT RADAR 0045 

MKC RADAR 0045 

• HSI 

+ MKC 

BUM 

+ICT 

••w 97W 96W 9 $W 

Fig. 15. ATS cloud patterns at 0045GMT, May 12, 1970 and radar 
pictures from Wichita (left) and Kansas City, Missouri. 
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Followed by a funnel aloft observation, between 0015 and 0025 a slow-moving 

tornado was verified by 40 photos taken by Kansas State patrohnen. The tornado 

spawned from the small echo which had grown into a large intense echo as shown in 

0023 chart. Although the echo was extensive, the cloud tops over the echo areas 

were rather flat, showing no distinct shadow features. 

At 0034, a development of a shadow is seen over the tornado area, suggesting 

that an overshooting top started increasing its height above the anvil top. The major 

tornado disappeared by 0030 while a small one was sighted 4 miles south-southwest 

of Beverly . 

3. TORNADO OCCURRENCES IN RELATION TO ANVIL GROW1H 
AND CLOUD-TOP HEIGHTS 

The foregoing evidence shows that tornado occurrences are related to the 

heights of the overshooting tops located in the vicinity of the tornadoes . For further 

investigation of the relationship between tornado occurrences and the cloud-top 

Table 1. Anvil areas and overshooting heights of CB near Salina, Kansas, 
May 11-12, 1970. The edge of the anvil was estimated from the shadow to be 
42, 000 ft MSL. The anvil-top height in the vicinity of overshooting tops is 2 
to 3000 ft higher than the anvil edge. 

Time (Z) Anvil Areas in sq. km Overshooting Heights in ft. 

2244 1, 100 + 900 = 2,000 

2256 1, 900 + 1,700 = 3,600 

2307 3,800 + 2,000 = 5,800 7000 ft 

2318 5, 900 + 2,800 = 8,700 *5000,*3000 

2329 8 , 700 + 3, 500 = 12, 200 6000, 5000 

2340 12,000 + 5, 300 = 15, 300 6000, 5000, 5000, 3000 

2351 15, 400 + 7,800 = 23,200 7000, 4000, 3000 

0002 18, 700 + 10, 500 = 29, 200 9000, 7000, 4000, 3000 

0013 21, 700 + 13, 900 = 35, 600 9000, 4000, 3000, 2000, 2000 

0023 26,800+16, 100 = 42, 900 7000, 6000, 4000' * 2000' 2000, 2000 

0034 31 ' 100 + 1 9' 500 = 50' 600 9000, 7000,*7000, 5000, 3000, 2000 

0045 36, 800 + 23, 500 = 60, 300 8000, 8000, 4000, 4000, 4000, 2000 

*within 15 miles from tornado 
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Fig. 16. Anvil area, its growth rate and the heights of over­
shooting tops in relation to tornado occurrences . 

heights as well as the growth rate of anvil b0tmdaries, Table 1 was compiled. 

To show the relationship between the tornado occurrences and the anvil 

growth, the areas of two anvils combined were plotted in Fig. 16. The ti.mes of 

tornadoes are stippled. It is seen that the areal growth of the anvil is alma.st 

exponential with time, sugges ting s trongly that the combination of the rapid growth 
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and the increase in the number of convective cells inside the anvil contributed to this 

exponential growth. 

When the rate of growth or the time derivative of anvil areas are compared 

with the tornado times, as ·shown in the middle diagram, there appears to be a 

tendency that tornadoes either weaken or die out when dA/ dt increases . This evidence, 

which is opposite from what one would expect, coincides with Purdom's (1971) finding 

that tornado occurrences take place when anvil growth rate decreases. He concluded 

that the pause in anvil growth and tornado occurrences are correlated. 

Shown in the bottom diagram in Fig. 16 is the time variation of the heights 

of overshooting tops above their environmental anvil. The basic data appear in 

Table l as well as in Figs. 4 through 15. Since three tornadoes spawned from this 

anvil complex were within a circle of 15 miles in diameter, all cloud-top heights 

within this circle were painted black. The diagram, thus obtained, clearly shows 

that the highest ones did not produce tornadoes, instead, tornadoes developed when 

nearby cloud-top height decreased. This is against the common belief that tornadoes 

are likely to spawn from vigorous thunderstorms reaching very high altitude. If we, 

for instance, compile statistics of tornado probability against the cloud-top height, 
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the result would indicate that tornado- and non-tornado producers cannot be distinguished 

simply as a function of the height of cloud tops penetrating several thousand feet above 

the tropopause. 

It should be noted that Bonner and Kemper's (1971) tornado probability as a 

function of echo-top heights (see Figs. 17 and 18) in three regions of the U. S. reveals 

that tornado probability does not increase significantly with echo-top height while 

hail probability increases almost exponentially with the height. Their results thus 

suggest that the echo-top height can be used as a primary hail predictor, while tornado 

occurrences are not too sensitive to the echo-top height. 

4. CLOUD-TOP TOPOGRAPHY 

The foregoing evidence suggests strongly that the mapping of cloud-top 

topography by all possible means is of vital importance in learning the overshooting 

mechanisms related apparently to the occurrences of tornadoes. Basic methods of 

cloud-top mapping are: 
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(1) Stereoscopic Method 

As demonstrated by Lee (1971) and others, successive pictures 

taken by RB-57 or U-2 aircraft can be use9. as stereopair photo­

graphs under the assumption that clouds in pair pictures do not move 

or change during the short time between two pictures. Shenk and 

Holub's (1971) cloud-top mapping from a stereo-pair Apollo 6 

pictures paved a way to map large cloud areas which cannot be 

photographed by a high-flying airplane. 

(2) Lunar Mapping Technique 

Single-image photogrammetry has been used in mapping 

lunar-surface relief. in which the camera and the sun are cons idered 

to be two separate observers looking at a given point on the moon 

from two different directions. The cloud-to-shadow relationships 

can thus be used to determine the heights of the objects above the 

shadow points. 

(3) IR Mapping of Cloud-top Temperature 

If we know the cloud-top temperature as a function of the 

cloud-top height, measured equivalent blackbody temperatures 

from either satellite or aircraft can be converted into the cloud-top 

height. 

(4) RHI and/ or PPI determination of Echo Heights 

Although the top of radar echoes does not coincide with 

the cloud top, it is feasible to estimate the patterns of cloud-top 

topography over the overshooting area by means of RHI and/ or 

spiral PPI scans which will permit us to determine the echo-top 

topography rather than the cloud-top topograhy. 

There are other methods such as stereo measurement from ground-base 

cameras which are useful to determine the time variation of the cloud tops of 

unobstructed distant clouds. In order to obtain synoptic views of ever-changing 

cloud tops, however, discussion in this paper is limited to the mapping of 

three-dimensional features of cloud-top relief. 
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Presented in Fig. 19 is an example of 1000 ft relief contours of the Salina 

cloud in Fig. 3, the third picture from the last. The location of the tornado near 

39N and 98W is not associated with high overshooting tops. There are three tall 

tops identified as D, E, and F which are located some 75 miles to the northeast of 

the tornado. No tornadoes were reported in the vicinity of these tops. 

Although the relationship between the equivalent blackbody temperatures and 

overshooting tops is not known at the present time, an assumption of dry adiabatic 

processes inside the protrusion implies that overshooting tops are colder than 

surrounding anvil tops. Fig. 20 shows the distribution of equivalent blackbody 

temperatures measured by a down-looking IR sensor on board an Air Force U 2 

aircraft. The author in a DC-6B research aircraft determined the extent of a thick 

anvil while flying just below the anvil base. The statistics shown in the lower right 

corner of the figure reveal the temperature frequencies measured while flying over 

the regions of weak and moderate echoes ph·otographed by the Oklahoma City radar. 

The mean IR temperatures over anvil being -46° , over weak echoes, -48° , and 
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over moderate echoes, -50° suggest a significant decrease in the equivalent black­

body temperatures from overall anvil to moderate echo areas. If a scanning radiome­

ter were used to depict patterns of IR temperature along a band both sides of the 

aircraft track, overshooting tops are likely to appear as cold dome tops. 

5. LABORATORY SIMULATION OF TORNADO FORMATION 

In an attempt to learn more about the mechanism of the tornado formation 

at the time of "the pause in anvil growth by Purdom", "insignificant height of cloud 

tops by Lee", and "the subsiding phase of the cloud-top height by Fujita", the 

author constructed a simple laboratory model shown in Fig. 21. 

The model is characterized by (a) holes which can be opened or closed to 

induce a cloud-scale updraft, (b) cups rotated by six concentric shafts. which are 

driven from above to generate Rankine vortex with varying core diameters and 

speeds, (c) the combined system which can travel through a distance of 15 ft at four 

speeds, and (d) the ground surface which may move up and down to change the 

depth of the atmosphere below the rotating cups. Dry-ice fog has been used as the 

tracer to make vortices visible. Note that a dark tube surrounded by dry-ice fog 



0023 GMT MAY 12, 1970 

so,ooo'----

40 K 

30 K----1 

0 
0 
<[ 
z 
a:: 
0 
I-

~ 
HEIGHT SCALE IS 10 TIME S THE HORIZONTAL SCALE 

0 50 

CLOUD TO SHADOW DISTANCE 

56 km I I 0 km Cloud Height 

so.I or Elev. Angle I 12° 

52K 
F 

0\ 
LN K ~0 

1--

PROFILES BENEATH ANVIL 
ESTIMAT ED FROM ECHOES 

i--------- 20 K 

100 NM 

Fig. 19. Anvil-top topography of Salina cloud when a tornado verified 
by 40 photos formed near Ellsworth. · The anvil top was contoured 
for every 1000 ft. using the cloud-shadow relationship. Contours 
designated by arrows and letter D are shallow depressions of the 
anvil top. 

26 



34'N 

U-2 AND DC-68 FLIGHTS ON MAY 24, 1962 

1640 

IOl'W 

- ·[~ 

"'"""""" }~~ 

0 

IOO'W 

mo ELK CITY 

1605 

- 40 10 

- 45 

- so 

OVER 
A NVIL 

1600 CST 

98'W 

TEMP. FROM ANVIL 
- 40 10 - 4 0 

- 4 5 - 4 5 

- 50 -50 

OVER 
WEAK ECHOES 

OKLAHOMA CITY 

+I 
RADAR 

a ECHO AREAS 
10 FREO. 

:~:::::: 

::~~::· 

OVER 
MODERATE ECHOES 

Fig. 20. Equivalent blackbody temperatures measured by a down-looking 
radiometer on board a U-2. Statistical analysis shows that the tops 
of convective regions are colder than overall anvil area. 

27 



Fig. 21. Laboratory simulation of tornado producing thunder­
storms characterized by bofu rotation and updraft. Note 
that the horizontal dimensions of surface vortex are at 
least one order of magnitude smaller than fue cloud scale 
rotation field. 
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extends from the surface all the way to the outer edge of the Rankine core ending at 

the edge of the innermost cup. 

Repeated simulation resulted in a matrix of very interesting pictures 

(see Fig. 22). As indicated by arrows the cloud-scale rotation increases 0 to 8 

units so does the updraft 0 to 2 in four steps . In this experiment, the updraft was 

added only around the core rotation, thus closing the innermost updraft holes, 

because the natural cloud system is characterized by a rotating updraft around the 

rotation core in which air could move either up or downward rather slowly. 

f 

Fig. 22. A matrix of simulated tornado pictures obtained by changing both 
rotation and updraft into 20 combinations. 
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As expected the simulated tornado intensifies when the rotation increases , thus 

initiating spray of water seen as bright dots. Updraft without rotation definitely induces 

a vortex, the intensity of which increases with the updraft intensity. 

A very strange thing , however , is the reduction of the vortex intensity when 

both rotation and updraft are added together. Examination of Fig. 22 will reveal that 

there are only very weak or no vortices in these pictures along a diagonal line extending 

lower left to upper right. This would mean that updraft and rotation do not cooperate 

together in inducing strong vortices on the grotmd, despite the fact that each of these 

parameters while acting independent of each other does produce tornadoes. 
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Shown in Fig. 23 is the summary of the picture matrix. Note the existence of 

a stippled area corresponding to the domain of no vortex on the surface. As we move 

to the lower right, tornado intensity increases from unstable, weak, strong to intense. 

These may be identified as being the "rotation-induced tornadoes". The domain of 

unstable t_o weak tornado in the upper left portion of the diagram may be called the 

"updraft-induced tornadoes". The term "tornadoes" was used with the understanding 

that they are laboratory simulated vortices one order of magnitude smaller than the 

simulated cloud aloft. 

Without further development of Doppler radars it is not feasible to assess the 

degree of rotation and updraft of various thunderstorms which may or may not be 

tornado producers. The laboratory simulation, however, shows positively that 

thunderstorms with weak rotational characteristics do not produce tornadoes because 

they are characterized by medium to strong updraft as well. Rotating thunderstorms 

such as might be identified as hook-echo storms are very likely to produce strong 

tornadoes in their pausing or slowing down pha~e of rotating updraft. If the updraft 

pulsates with a certain period we may expect to find the periodic occurrences of 

family tornadoes rather regularly . Both Fujita· (1963) and Darkow (1971) pointed out 

the existence of a 45 min mean occurrence interval of family tornadoes. 

6. CONCLUSIONS 

Detailed analysis of ATS picture sequence of anvil clouds near Salina, Kansas 

revealed that tornadoes occur during the decreasing to pausing stage of the parent 

cloud top, suggesting that excessive updraft could be acting as a damper on the forma­

tion of tornadoes. A laboratory simulation of parent cloud and tornado indicated also 

that an excessive updraft added to a rotating cloud tends to kill the tornado. 

It is concluded, therefore, that the determination of the time variation of 

updraft is of vital importance in understanding the nature of thunderstorm updrafts . 

As a first step of this research it is essential to observe the time variation of both 

height and shape of the cloud tops overshooting beyond the overall anvil level. 

Such an objective can be achieved by performing a combined effort of 
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i) IR measurements of cloud-top temperature from aircraft. 

ii) Cloud photography from overflying aircraft. 

iii) Horizontal photography from aircraft at anvil level. 

iv) Radar photographs, RHI and/or spiral PPI, and Doppler. 

The data can be analyzed to determine the nature of overshooting in relation to its 

time and space variations. The final goal is, of course, to monitor the anvil tops 

from geostationary satellites for the severe storm watch and subsequent warning 

purposes. Nevertheless, the basic information for satellite design criteria must 

be obtained and justified based on these proposed measurements . 
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