THE EARTH's SURFACE.
nite number of marine productions. The fecond, on the contrary, are lefs regular in their ftructure, and include no marks of fea-bodies. Thele mountains of the firft and fecond formation have nothing in common but the perpendicular fiffures; but thefe fiffures are effected by two different caufes. The vitrefcent matters, in cooling, diminifhed in fize, and, of courfe, they fplit, and receded to different diftances. But thofe compofed of calcarious matters tranfported by the waters, fplit into fiffures folcly by drying.

I have often remarked, that, in detached hills, the firft effect of the rains is gradually to carry down from the fummit the earth and other bodics, which form at the foot a pretty thick ftratum of good foil, while the top is left entirely bare. This effeet i is, and neceffarily muft be, produced by the rains. But a previous caufe difpofed thefe and fimilar matters round all hills, not excepting thofe which are detached; for, on one fide, the earth is uniformly better than on the other: The hills are always fteep and precipitant on one fide, and have a gentle declivity on the other; which proves clearly, that the action, as well as the direction of the motion of the waters, were greater on one fide than on the other.

> Of the Denfty wibicb certain Matiers acquire by Firc, as well as by Water.

IN p. 246, I faid, that the bard points found in free-fione conffifed of meiallic malter, webich appeared to barve been melted by a firong fire. This affertion feems to infinuare that the great mafles of free-flone have originated from the action of the primitive fire. I at firft imagined that this matter owed its denfity and the adhefion of its particles folely to the intervention of water. But I have fince learned that the attion of fire produces the fame effea; and I fhall relate fome experiments which at firft furprifed me, but which I have repeated fo often as to remove every doubt upon this fubject.

EXPERIMENTS.

I pounded free-ftones of different degrees of hardnefs, till they were reduced to a powder more or lefs fine. Thefe powders I employed to cover the cements I ufed in converting iron into fteel. This powder of free-ftone was ftrewed over the cement, and heaped up, in the
form of a dome of three or four inches in thicknefs, on an earthen veffel of three fect long by two broad. After undergoing the action of the fire in my blaft furnaces, during feveral days and nights without interruption, it was no longer the powder of free-ftone, but a mars fo folid that we were obliged to break it in order to uncover the veffel which contained the iron, now converted into ftecl. The attion of fire upon this powder of free-fone produced maffes equally folid as free-ftone of a middling quality, which does not ring under the hammer. This faet fhewed that fire, as well as water, could prove a cement to vitrifiable fand, and, confequently, might have formed thofe immenfe mafies of freentonc which compofe the nucleus of fome of our mountains.
I am, therefore, fully perfuaded, that all the vitrefcent matters, of which the interior rock of the globe, as well as the nuclei of great mountains, are compofed, have been produced by the action of the primitive firc; and that the waters have only formed thofe accefiory ftrata which furround thefe nuclei, which are all parallel and horizontal, or cqually inclined, and in which we find the relicks of fhells and other produtions of the ocean.
In the formation of free-flone and other vitrefcent matters, I pretend not to exclude the intervention of water. On the contrary, I am inclined

THE EARTH's SURFACE, 65

inclined to believe, that vitrifiable fand may acquire confiftence, and unite into maffes more or lefs hard, perhaps more cafily by means of water than by the action of fire. I have related the above fats folely with the view of preventing objections which would not fail to be made, if it had been thought that I attributed the folidity of free-flones, and other bodies compofed of vitrifiable fand, to the intervention of water alone. It is certain, that all the free-fone found on the furface, or at inconfiderable depths, have been formed by water; for, on the furface of thefe maffes of free-ftone, we perceive marks of undulations and rollings, and fometimes the impreffions of plants and fhells. But the freeftones formed by the fediments of water are eafily diftinguifhed from thofe which have been produced by fire. The latter have a coarfer grain, and crumble down more eafily than freeflonc cemented by the intervention of water, which is more compact, and harder than that whofe particles have been united by the action of firc.

Ferruginons matters affume a great degree of hardnefs by fire; for nothing is harder than cait iron. But ferruginous bodies may likewife acquire confiderable denfity by the intervention of water. Of this fact I was afcertained by putting a quantity of filings of iron into veffels expofed to the rain. Thele filings formed a mafs

VOL, IX.
E
fo

66 INEQUALITIES UPON

fo hard, that it could only be broken by the hammer.
The vitreous rock which compofes the interior mafs of the globe, is harder than common glafs. But it is not harder than certain volcanic lavas, and much fofter than caft iron, which, however, is only glafs mixed with ferruginous particles. This great hardnefs of the interior rock fhows that it confilts of the moft fixed particles of matter, and that, from the time of their confolidation, they affumed the confiftence and hardnefs which they flill poffefs. Hence it cannot be objected to my hypothefis of general vitrification, that bodies reduced to glafs by our furnaces are lefs hard than the rock of the globe; fince caft iron, fome lavas, or bafalts, and even certain porcelains, are harder than this rock, and yet they derive their hardnefs from the action of fire alone. Befides, the elements of iron and other minerals which give hardnefs to matters liquified by fire, or attenuated by water, exifted, as well as the fixed earth, from the time that the globe was firt confolidated: And I have aiready remarked, that the interior rock ought not to be regarded as pure glafs, fimilar to that we make with fand and falts, but as a vitreous product mixed with matters the moft fixed, and moft capable of fupporting the great and long continued action of the primitive fire, the great effects of which can only be compared

THE EARTH's SURFACE. 67
in a very diffant manner with the inconfiderable operations of our furnaces; and yct, from this comparifon, though unfavourable, we clearly perceive what effects are common to the primitive fire and to our furnaces; and it fhows, at the fame time, that the degree of hardnefs depends lefs on the degree of heat than on the combination of matters fubmitted to its action.
\square V.

Of the Inclination of the Strata in tbe Mountains.
I Remarked, in vol. i. p. 15 that, in plains, the frata arc exactly borizontal. It is in the mountains only that they are inclined to the borizon; becaufe tbey bave originally been formed by fediments depofited upon an iuclined bafe.

The beds of calcarious matters are not only horizontal in the plains, but likewife in all mountains which have not been difturbed by earthquakes or other accidental caufes: And, when the ftrata are inclined, the whole mountain is likewile inclined, and has been forced into that pofition by a fubterraneous explofion, or by the finking of a part of the earth, which had ferved it as a bafis. We may therefore conclude, in general, that all ftrata formed by the fediments of water are horizontal, like the

