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ON THE DETERMINATION OF EXCHANGE COEFFICIENTS: PART II -

ROTATING AND NONROTATING CONVECTIVE CURRENTS 

Rodger A. Brown 
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Chicago, Illinois 

ABSTRACT 

A set of equations i~ proposed for computing eddy viscosity 
and diffusion coefficients within rotating and nonrotating con -
vective currents. The equations are especially well suited for 
numerical simulations because the only parameters upon which 
they depend· are the three components of wind velocity. Since 
the equations are based more on intuition than physical 
arguments, they are evaluated for simplified models in an 
attempt to show that they have an implicit physical basis. The 
physical validity of the equations becomes most obvious when 
the computed values are compared with those for an actual 
cumulonimbus and for noncloud data. One outcome of this study 
is the revision of a "universal" relation originally proposed by 
Richardson (1926), whereby the exchange coefficient ( K) for 
various scales of atmospheric motion can be determined from a 
characteristic length ( l ) , which is a measure of the degree of 
turbulence; the revised relation is 

K = 1.3 x 10-2 cm215 sec-1 l 815 (cgs) 

or (mks) 

1. Introduction 

In Part I of this paper (Brown, 1965), it was shown that one of the proposed 

sets of equations for determining exchange coefficients gives reasonable results for 

evaluating the eddy viscosity coefficient for vertical motion in cumuli and cumulo­

nimbi. In Part II, the complete set of equations will be applied to both rotating and 

nonrotating convective currents . Some of the matei;ial presented in Part I will be 

repeated here in order to give internal consistency to this part. 

In the past few years, investigators in the field of cloud dynamics have been 

The research reported in this paper has been partly supported by the Air Force 
Cambridge Research Laboratories of the Office of Aerospace Research, USAF, 
Bedford, Mass., under Contract No. AF 19(628)4807 and partly by the National 
Severe Storms Laboratory, U. S. Weather Bureau, under grant Cwb WBG - 41. 



able to make use of electronic computers to solve the otherwise unmanageable 

nonlinear differential equations. Malkus and Witt (1959) were among the first to 

take advantage of computers to study the evolution of a dry convective bubble by 

using a two-dimensional (x, z) network of grid points. Based on their successful 

simulation of the early stages of growth, others (see,~· Chou, 1962; Lilly, 1962, 

1964; Ogura, 1963) have used similar techniques in order to reproduce the general 

growth features of small cumulus clouds. As computers become faster and have 

much larger storage facilities, it is inevitable that the growing stage, and eventually 

the entire life cycle, of cumulonimbi will be simulated. 

In order to take turbulent mixing into account in their numerical experiments, 

investigators have included exchange coefficients (for eddy viscosity and diffusion) in 

their equations. For simplicity the coefficients have been assumed to be constant 

throughout the simulation. This is acceptable for the smaller cumulus clouds; 

however, when trying to simulate the growth from a small cumulus into the large and 

powerful cumulonimbus, there is an increase of several orders of magnitude in the 

exchange coefficients. It becomes quite obvious that to use coefficients that are 

appropriate for a cumulonimbus would prevent the growth of a cumulus and to use 

coefficients that are appropriate for a cumulus would allow a cumulonimbus to grow 

beyond realistic bounds. Therefore it would be desirable to have some means for 

estimating the proper order of magnitude of the coefficients. 

In the following sections equations are presented which can be used to 

calculate the exchange coefficients in a numerical simulation directly from the 

parameters that are being computed. Then, using simplified models and data from 

a study of a cumulonimbus, realistic values for the coefficients are calculated for 

various scales of convective currents that are found in the atmosphere. 
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2. Discussion of Exchange Coefficients 

The calculation of values for the various eddy exchange coefficients is 

essentially restricted to the surface boundary layer of the atmosphere. When it 

comes to the determination of the order of magnitude of the exchange coefficients in 

convective currents, such as those associated with cumulus and cumulonimbus clouds , 

it becomes quite obvious that the boundary layer approach is not directly applicable. 

Of the exchange coefficients, it appears that the one that has been of most 

interest to theoretical cloud dynamicists is the eddy viscosity coefficient. In almost 

all cases, the magnitude of the coefficient has been estimated through intuition and 

the estimates have been only for cumuli; however, there have been a few cases in 

which estimates of the coeffic ient were made using aircraft measurements in a 

cumulonimbus. The ranges in estimates and measurements as given by various 

investigators are presented in Table 1. The concensus of opinion is that the 

viscosity coefficient in cumuli should be of the order of 10 to 102m 2sec -l; the 

coefficient in cumulonimbi should be closer to 103m 2sec - l. 

In Ogura' s (1963) simulation of cumulus growth, the magnitude of the viscosity 

coefficient was varied, with everything else remaining constant. He found basically 
no difference in the growth for values of 0 and 4 m 2 sec - l . However, the use of 

40 m 2sec -l did produce a difference. Therefore, one can conclude from this that 

the lower limit of the viscosity coefficient in small cumulus clouds is of the order of 
2 -1 -10 m sec . 

In light of the above discussion, it would be advantageous to have a set of 

equations from which the various exchange coefficients within convective currents 

can be computed using available data. In general one might expect turbulence to be 

some sort of function of both the wind speed and the shear normal to the direction of 

the wind. The dimensions of a kinematic exchange coefficient are [L2T-~,where L 

stands for length and T for time. Dimensional analysis reveals that an exchange 

coefficient has the same units as the ratio of kinetic energy per unit mass to the 

normal shear of the wind. Thus, in its general form, the proposed exchange 

coefficient equation is 

I~~ I 
K = ( 1 ) 

where K is an eddy exchange coefficient, V is wind speed in a particular direction 

and n is in a direction perpendicular to that of the wind. The vertical bars in the 



CUMULONIMBUS (DEDUCED FROM MEASUREMENTS) 

Oguro (1963) ..-. 

' . Pinus (1963) ' I 

CUMULUS (INTUITION) 

---------------------4~ Oguro (1963) 

Lilly ( 1962) ;~------'~ 

Chou (1962) -
Gutman (1961) :~-----------------..l.~ 

Schmidt (1947) ....-

Christians (1935) 

I I I 
I0-1 10° 101 102 

KINEMATIC EDDY VISCOSITY COEFFICIENT ( M2 SEC=1) 

Table 1. Eddy viscosity coefficient in cumulus (intuition or as used in numerical simulation) and cumulo­
nimbus (deduced from aircraft measurements) as mentioned in literature. Vertical line indicates definite 
limit given by author; arrow indicates order of magnitude. 
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denominator indicate that the absolute value of the shear should be used in order to 

make the coefficient positive. 

Convective currents found in nature have components of motion in three 

mutually-perpendicular directions; for instance, vertical , radial, and tangential. 

This would imply the need for three different viscosity coefficients, an idea which at 

first might seem st range, but the single viscosity coefficients used in turbulence 

studies is meant to describe the turbulence only in the "one-dimensional " horizontal 

wind. The gene r al diffusion equation takes cognizance of the fact that diffusion of 

momentum, heat , etc. is physically a three-dimensional process. Therefore, it is 

proposed that the eddy viscosity coefficients for vertical(Kz) , radial(Kr) and tangential 

(Kt) motions be defined, respectively, as 

I 

Kz 
2W2 

= 

l~I 
( 2 ) 

I 2 

Kr = 2 Vr 

1 :~r I 
( 3 ) 

I V2 

K, 2 1 
= 

1!;' I 
( 4 ) 

5 

where w , Vr , and Vt are the respective vertical, radial and tangential components of 

the wind and where r and z represent radial and vertical directions , respectively. 

The equations include the inherent assumption that convective currents are ideally 

axially symmetric; therefore, they contain no a lro8 terms . 

For turbulence studies it is conventional to have separate coefficients for the 

eddy diffusion of heat and of water vapor. However, if we view eddy diffusion 

proce sses as being due to turbulent motions in the atmosphere, it would seem 

reasonable to have the same coefficient for the diffusion of both heat and water vapor. 

The corresponding eddy diffusion coefficient (Kd) would be 

~ ( v~ + v~ + w2 ) 
Kd = -~------

la~ (v, +vt)I + l:rwl ( 5 ) 

Te chnically, all of the exchange coefficients are diffusion coefficients ; however , in 

this paper , the term viscosity will be use d to represent diffusion of momentum and 

the term diffusion will be understood to represent the diffusion of heat and water 



vapor. 

The set of equations (2) - (5) can be used for computing the exchange 

coefficients in convective currents, provided the distributions of Vr , Vt , and w 

are known. This set, therefore, would be best suited for use in a numerical 

simulation where velocity values at a group of grid points can be computed. 

It is important to recognize that Eqs. (2) - (5) are not the end result of a 

rigorously developed theory of atmospheric turbulence; in fact, the dimensional 

analysis approach would appear to be devoid of any physical reality. While this may 

seem to be the case , the following !!:_ posteriori verificat .on of the physical validity of 

the equations will be used: if it can be shown 

1) that results obtained by using velocity values within a cumulonimbus 
agree with independently determined coefficients using the same 
velocity data and 

2) that results obtained from both simplified cloud models and an 
actual cumulonimbus fall in line with values obtained by other 
investigators for both larger and smaller scale phenomena, 

then it will be concluded, without reasonable doubt, that the set of equations have an 

implicit physical basis. 
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3. Application of Equations to Rapidly Rotating Convective Currents 

The order of magnitude of exchange coefficients in rapidly rotating convective 

currents (from small eddies and dust devils to large tornadoes) will now be investi­

gated. The most apparent feature of these phenomena is the high tangential velocity. 

A less obvious feature is the rising motion along the edge of the vortex; there is a 

question as to whether up- or down-motion occurs in the center. Radial flow is also 

associated with rotating convective currents; air near the ground converges into the 

base of a vortex at a much faster rate than it does into the sides of the vortex at 

higher levels. Since the distribution of radial velocity within a convective vortex is 

not known and since the radial flow through the side of a vortex is estimated to be 

negligible compared with the other components of motion, only the exchange 

coefficients involving vertical and tangential motions will be evaluated. 

It will be assumed that all of the vertical motion within a rotating convective 

current is upward- -even though there is increasing evidence to indicate otherwise. 

Furthermore, it will be assumed that the radial distribution of the updraft has a 

Gaussian profile . Based on such a profile, the following simplifications will be used 

to evaluate Kz in Eq. (2): 1) the vertical velocity in the numerator of (2) is equal to 

the horizontal mean, 2) the horizontal mean (across the column) of the vertical 

velocity is one-half of the maximum value at the center of the cloud at that level, 

and 3) the representative shear at that level is equal to the maximum velocity 

divided by the radius of the column. Figure l shows a straight-line approximation 

to the Gaussian curve that satisfies the above requirements. By substituting the 

simplifications into (2), the equation reduces to 

I -o = - w 8 , ( 6 ) 

where K; can be considered as the characteristic eddy viscosity coefficient for a 

rotating column of diameter D having a mean vertical velocity w • The word- -

characteristic--is used in this paper to indicate a prevailing or representative 

value. 

It will be noted that (6) is similar to a conventional mixing-length-theory 

expression for the eddy viscosity coefficient 

I 

Zle :::::: wl, 

where Ve is the kinematic eddy viscosity coefficient, w' is the perturbation velocity 
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which is a measure of the degree of turbulence, and L is a characteristic length of 

the prevailing eddy. The two equations agree quite closely if D is taken as a measure 

of the characteristic length and if the perturbation velocity is assumed to be one order 

of magnitude smaller than the average velocity. 

The range in values of K~ is presented in Fig. 2. The solid portion of each 

line represents that part of the Hne which would be valid for natural combinations of 

diameter and vertical velocity. As might be expected intuitively, the larger and 

more powerful the dust devil or tornado, the larger the coefficient. 

A simplified model for tangential velocity is a bit more difficult . The radial 

change of Vt can be obtained from the Rankine vortex, where Vt/r is constant between 

the radius of maximum Vt and the center of the vortex and where Vt r is constant at 

radii greater than that for the maximum velocity. However, (4) requires that the 

change in vt with height be specified; this quantity is not theoretically obvious. 

Fortunately, Hoecker (1960) was able to obtain a vertical cross-section of Vt from 

measurements made along the edge of the Dallas tornado funnel. Based on correc­

tions, made by Goldman (1965), to eliminate the effect of shock velocities near the 

center of the lower portion of the tornado (Fig. 3), it was found that within the 

region where the radius is less than the radius of maximum Vt (region of maximum 

Vt roughly coincides with edge of visible funnel), the average value of. lavt/az I is 

approximately 0. 2 sec -l . If this value is assumed to be typical for both dust devils 

and tornadoes, its inclusion in (4) results in 

I - 2 .Kt = 2.5sec Vt , ( 7 ) 

I 

where Kt is the characteristic viscosity coefficient for a given mean tangential 

velocity and a vertical shear of 0. 2 sec - l . The graphical representation of this 

equation is given by the solid line in Fig. 4. The dashed lines in the figure represent 

an arbitrary range in values of K; based on vertical shear values of 0. 06 and O. 6 sec -l. 

In order to evaluate the eddy diffusion coefficient from (5) the following 

. assumptions are made: 1) the radial velocity and vertical shear of the radial velocity 

are negligible compared to the other values , 2) the remaining terms are evaluated 

·in the same way they were to obtain Eqs. (6) and (7), and 3) the mean tangential 

velocity is equal to twice the mean vertical velocity (which seems reasonable from 

the data obtained by Hoecker, (1960). With these assumptions, Eq. (5) becomes 

K' = 5W
2 

D , 
. d alw I+ 0.4 sec-I D ( 8 ) 



where K~ is the characteristic eddy diffusion coefficient for vortex of diameter 0 

and with mean vertical and tangential velocities of w and Vt(::: 2 w) • The results 

are plotted in Fig. 5, where again the solid portions of the curves represent values 
I 

of Kd that would be found for natural combinations of velocity and diameter. 

It has been shown that the exchange coefficients inside vortices increase with 

both the size of the vortex and the magnitude of the velocity. In addition, intuition 

suggests that velocity and size of vortex should change in the same direction. If 

one goes so far as to say that the diameter of the vortex in meters is of the same 

order of magnitude as the mean vertical velocity in meters per second, then it is 

possible to combine the data presented in Figs. 2, 4, and 5 into a compact and 

logical physical picture . The results of such a consideration are given in Table 2, 

where the additional assumption is made that the mean tangential velocity is equal 

to twice the mean vertical velocity. The factor K was introduced as a mean 

characteristic exchange coefficient which can be determined for each scale of vortex 

motion. It is seen that K shows a progressive increase as one goes from the scale 

of small eddies to that of tornadoes . 
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Table 2. Order of magnitude of various parameters associated with atmospheric vortices ranging from 

small eddies to tornadoes. A mean characteristic exchange coefficient for each scale of vortex is indicated 

byK. 

Phenomenon D w v, K~ K; K~ K 
-1 -1 2 -I 2 - I 2 -I 2 -1 ( m) (m sec ) (m sec ) (m sec ) (m sec ) (m sec ) (m sec ) 

eddy IO-I 10-l 2 x IO-I I0-3 10-l I0-2 10-3 to 10-l 

small dust devil I I 2 10-l IO I 10-l to 10 

dust devil 10 IO 2 x IO 10 I03 102 IO to 103 

tornado 102 to 103 102 2 x 102 103 105 104 103 to 105 

ROTATING COLUMN ___ ____ _....,. 

2W Wx 

w 

.,._ ____ RADIUS----..... 

Fig. 1. Example of linear approximation for Gaussian vertical velocity profile. It is constructed such 

that horizontal mean is one-half of maximum value. 
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(1965) to eliminate effect of shock velocities near the center of the lower 
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4. Application of Equations to Convective Clouds 

By applying Eqs. (2) - (5) to convective currents in clouds it will be possible 

to check the intuitive values given in Table 1. For clouds the most important 

component of motion is in the vertical, with the radial component being of secondary 

importance. The tangential component does not occur in small cumuli, but, even 

though it does start to appear in large cumulus congestus and cumulonimbus clouds, 

it can be neglected in the larger nontornado-producing clouds in comparison with the 

other two components of motion. Therefore, in this section we are concerned only 

with determining the exchange coefficients for vertical and_ radial motion. 

The same assumptions that were used to derive K~ above will be used here, 

where we know that the vertical motion in the center is upward during the growing 

stage. The pertinent equation is 

K' = I -o z 8 w ( 9) 

The curves of K~ for a realistic range of wand D are plotted in Fig. 6. Except for 

very large clouds , D can be taken as cloud diameter as well as diameter of the 

updraft. For small cumulus clouds, an eddy viscosity coefficient of the order of 

102m 2 sec - l seems to be quite realistic and to be in agreement with the concensus of 

values shown in Table 1. However, the range of values found by Pinus (1963) for a 

cumulonimbus several km in diameter and having a mean vertical velocity of about 

13 

5 m sec -I are one order of magnitude smaller than those indicated by Fig. 6. Ogura's 

(1963) estimate from aircraft data is in closer agreement with these theoretical 

results. 

It was mentioned above in conjunction with Table 1 that one cotild conclude 

from the numerical simulations of Ogura (1963) that the smallest viscosity coefficient 

that one might expect in a cumulus cloud is of the order of 10 m 2sec -l. The data 

presented in Fig. 6 are in total agreement w~th this conclusion. 

The establishment of a simplified model for finding the vertical distribution 

of radial velocity is necessary before (3) can be evaluated. As a rough approxima -

_ti.on, one can assume 1) that there is a linear change in the radial velocity from cloud 

base to cloud top and 2) that the maximum rate of inflow (cloud base) has the same 

magnitude as the maximum rate of outflow (cloud top). It is recognized that such a 

profile is a rather crude approximation; even though it allows for radial conservation 

of mass, one would expect a weaker convergence in the mid and lower portions of a 



cloud and a stronger divergence in the upper-most region. 

In an attempt to derive an expression for the vertical distribution of radial 

velocity. Fig. 7 was constructed. Fig. 7a depicts an idealized radial distribution of 

radial velocity with the coordinates being normalized radial velocity (relative to 

maximum radial velocity) and normalized radius (relative to radius of cloud). With 

such a profile, the horizontal mean of the radial velocity turns out to be 70 per cent 

of the maximum value. Fig. 7b shows, in a normalized presentation, the vertical 

distribution of radial velocity in various parts of the cloud based on the two 

assumptions mentioned above. The vertical line indicates that there is no radial 

motion along the center of the cloud. The sloping solid line represents the change in 

maximum radial velocity at various heights. As seen by comparison with Fig. 7a, 

the vertical profile of radial velocity in any part of the cloud should lie in the shaded 

region. The dashed line represents the vertical distribution for the horizontal mean 

of the radial velocity; a numerical value for this distribution is needed in the 

denominator of Eq. (3). 

In order to obtain the numerical value, reference must be made to empirical 

data. Radial velocity data with which the author is most familiar is that found in 

Brown and Fujita (1965). The data were calculated, using the continuity equation, 

14 

from vertical .velocity data which had been obtained semi-empirically (the procedure is 

outlined in more detail below). Even though the information is not based on direct 

measurements, it should be realistic enough for present purposes. The maximum 

radial velocities found at six different levels are plotted at their respective heights 

above cloud base (Fig. 8). The dashed line is a mean straight line through the 

scatter of points. The solid line has the same slope as the dashed one but is 

symmetric with respect to the level of zero radial velocity; this line corresponds to 

the solid sloping line in Fig. 7b. 

The information is now available for determining a simplified version of Eq. · 

(3). The vertical change of the mean radial velocity according to Figs. 7 and 8 is 

I /ivr I= 0.7 x 7.0 m sec- I = 6.7 x I o-4sec-I . 
t:. z 7. 3 x I 03m 

It is being assumed I) that all clouds from small cumuli to large cumulonimbi have 

the same change of radial velocity with height and 2) that the inflow and outflow 

velocities at cloud base and top, respectively. are roughly proportional to the size of 

the cloud. Since the only size factor available in this model is height, the relationship 
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between mean radial velocity at cloud base or top ( Vr0 ) and the vertical extent of the 

cloud (Z) is 

IVr0 I = kZ, 

whe re, from the data given in Fig. 8, k is 

k = 
0.7 x 3.5 m sec- I 

7.3 x I0 3 m 

Now, since a mean radial velocity for the entire cloud is needed, it can be specified 
as being one-half the magnitude of the radial-mean value at cloud base or 

where the double horizontal bar is the average over the entire cloud. 

The characteristic eddy viscosity coefficient for radial motion in the simplified 

model of a cloud is 

K~ = 
I = 2 
2 Vr 

l~~rl 
= 2.1 x 10-5 sec-1 z2. 

This equation is plotted in Fig. 9 . 

(IO) 

If it is assumed that the tangential velocity is negligible in all clouds except the 
rare tornado-producing ones, the above approximations can be applied to derive a 
simplified diffusion coefficient; however , instead of assuming that the mean radial 
velocity is a function of the depth of the cloud, it will be assumed that it is equal to 
one-tenth of the m ean vertical velocity. The characteristic eddy diffusion coefficient 
is then represented by 

I.I w2 D 
( 11) 

its range of values are plotted in Fig. IO . Since the relative influence of the radial 
velocity is so small, Figs. 6 and 10 differ only at the larger diameters . 

Table 3 contains a general summary of the magnitude of the exchange of 
coefficients that could be expected in cumulus and cumulonimbus clouds. The values 
for the diameter, vertical extent, and vertical and radial components of velocity are 
quite arbitrary and are used only to determine typical values for the coefficients. 
For tornado-producing cumulonimbi, which have a fairly high tangential velocity near 
the axis of rotation, the viscosity coefficient for tangential motion will be an important 
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exchange coefficient; however, for the ordinary clouds, tangential velocities are 

negligible and the corresponding exchange coefficient need not be determined. In 

comparison with rotating currents (Table 2), the range in the characteristic coefficients 

for a particular phenomenon is much smaller for nonrotating updrafts. It should be 
remembered that the use of the word cloud here assumes that the entire cloud is one 
updraft. 

Table 3. Characteristic magnitudes of exchange coefficients in cumulus (humilis and congestus) and 

cumulonimbus clouds . Double horizontal bars indicate average throughout entire cloud; 0 is cloud 
diameter; Z is vertical extent; K is typical range in coefficients. 

' ' K~ R Cloud D z w -1 v, -l Kz Kr 
2 -1 2 -1 2 -1 2 -1 type (km) (km) (m sec ) (m sec ) (m sec ) (m sec ) (m sec ) (m sec ) 

Cuhu l 1 1 0.1 102 2 x 10 10
2 

10 to 102 

Cu con 3 6 4 0. 4 103 8 x 102 103 103 

Cb 5 10 6 0. 6 4x103 2 x 103 4 x 103 2-4 x 103 
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base to cloud top. Dashed line r epresents simplified vertical distribution of 
mean radial velocity. 
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5. Evaluation of Eddy Exchange Coefficients within a Cumulonimbus 

Up to this point, the only arguments presented for the validity of the original 

set of Eqs. (2) - (5) have been that the viscosity coefficient for vert~cal motion agrees 
with the concensus of various estimates and that the coefficients vary in an expected 

manner. In this section the equations will be tested by comparing them with semi ... 
empirical data from a cumulonimbus, as obtained by Brown and Fujita (1965). 

Since the work of Brown and Fujita (1965) has not yet been published in a 

widely-read periodical, it would be wise to outline their work. In an attempt to 

combine the flux of mass into the expanding anvil top of a thunderstorm (total anvil 
mass determined from stereophotogrammetry) with the theoretical vertical velocity 
(one large updraft assumed) within the cloud prior to the formation of a downdraft 
(entrainment procedure applied to proximity rawinsonde observation in northern 
Arizona), they found that there was no direct correspondence between the two. The 
problem was finally solved by developing a model for a cumulonimbus cloud prior to 
the formation of a downdraft; even though the lack of a downdraft in a cumulonimbus 

is contrary to the Byers-Braham (1948) model of a thunderstorm, it is representative 
of thunderstorms that occur in the arid regions of the southwestern United States. 
The model cumulonimbus consists of three concentric cylindrical regions which 

represent the vertical stem of the cloud; the turbulent entrainment of environmental 

air is greatest in the outer region and decreases to zero in the central region where 
only the vertical component of motion is found. Using the three-region model, Brown 

and Fujita proceeded to compute the vertical and radial distributions of vertical 

velocity within the cumulonimbus as it appeared 10 minutes after the initial formation 

of the anvil; though the vertical velocities were on the high side- -maximum of 30 m 
sec - l _-they did not exceed those found in cumulonimbi. By making use of the 

continuity equation for axial symmetry, the horizontal distribution of radial velocity 
was computed from the vertical distribution of vertical velocity at height intervals of 
one kilometer (the points plotted in Fig. 8 were obtained from the resulting curves). 

By recognizing the equivalence of the entrainment concept and turbulent 

exchange processes, Brown and Fujita replaced the entrainment expression in their 
equation of vertical motion with the conventional eddy viscosity term 

where Z1e is the eddy viscosity coefficient and \/2 is the Laplacian operator . . In this 
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way, with everything else known or able to be calculated from the computed data, the 

equation could be solved for l/e • At 66 data points (horizontal interval 0 . 4 km and 

vertical interval 1. 0 km) within the stem of the cloud below anvil level, the resulting 
2 4 2 -1 . 

values of 'lie ranged from 1. 7 x 10 to 2. 0 x 10 m sec , with a median value of 

3. 2 x 10 3 m 2 sec - l. At the time of calculation the cloud was 7. 3 km tall, the stem 

(and assumed updraft) was 4. 0 km wide and the mean vertical velocity within the stem 

(at the same 66 data points) was 9 . 3 m sec-1; from this, Fig. 6 indicates that the 

characteristic eddy viscosity coefficient for vertical motion should be 4. 7 x 103 m 2 

sec - l. Therefore, in the mean, there is strong evidence that at least Eq. (2) is 

physically valid. 

As an even better idea of the validity of (2), the equation should be evaluated 

at the same 66 data points; however , since the denominator becomes zero at the 

center of the cloud, (2) can be evaluated only at the other 60 data points. The 

resulting values ranged from 2. 0 x 10 to 1. 7 x 104 m 2 sec - l, with a median value of 

1. 4 x 103 m 2sec -l . These data for the eddy viscosity coefficient for vertical motion 

are summarized in Table 4 . The consistency of both the median and range in the 

data is extremely encouraging. 

Table 4 . Range in, and median values of, eddy viscosity 

coefficient for vertical motion within a cumulonimbus based on 

the semi -empirical data of Brown and Fujita (1965) and on the 

theoretical equations proposed herein. 

Eddy Viscosity Coefficient (m 2 sec - I) 

Equation Lowest Median Highest 

lie (66 points) 1.7x10 2 
3.2x103 2.0xlO 

4 

K~ (D , w -Fig. 6) 4 . 7x10 
3 

l/e (60 points) 1. 7x10 2 
3. Ox103 2.0xlO 4 

Kz (60 points) o. 2x102 · 1.4x103 1.7x10 4 

While it will not be possible to compare the coefficient for radial motion with 

independently derived values, it will be possible to evaluate Eq. (3) using the radial 

velocity distribution given by Brown and Fujita and then to compare the median value 

with the characteristic vafoe ._given in Fig. 9 . In order to evaluate (3) the problem 
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still exists concerning I ovrloz I; again the denominator is zero along the central axis 

of the cloud. In order to simplify the problem, the vertical shear of the radial 

velocity is taken as a constant value with height for each radial distance. The shear 

value is determined in the same way as it was in Fig. 8; at each of the 60 data points 

the actual value of radial velocity is used. As a result of evaluating Eq. (3), the 
0 3 2 -1 . 3 2 range was from 1. 6 x 10 to 6. 7 x 10 m sec ; the median value was 1. 2 x 10 m 

sec -l. For a cloud 7. 3 km tall, Fig. 9 predicts that the characteristic viscosity 

coefficient for radial motion should be 1.1 x 103 m 2sec -l . Even though basic infor­

mation from the same cumulonimbus was used in order to derive Eq. (10) and Fig. 9 , 

identical information was not used in the evaluation of (3) . 1;'herefore, it can be 

argued that we again have an indication, though less rigorous , that the set of Eqs. 

(2) - (S) have physical validity. 

By assuming that tangential velocities within a cloud are negligible compared 

to radial and vertical velocities, it is possible to use the above -mentioned data to 

compute the diffusion coefficient from (5). The values of the coefficient were 

calculated for each of the 60 data points used for the viscosity coefficients . The 

resulting values ranged from 2. 9 x 10 to 1. 6 x 10 
4 

rn 
2 
sec - l and the median was 

1. 4 x 103 rn 
2 
sec-

1
. A comparison of the various exchange coefficients within the 

curnul0!'imbus is made in the next section and the values are tabulated in Table 5. 
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Since. data are now available, a check should be made of the ratio of mean radial 

velocity to mean vertical velocity in order to test the realistic aspects of the assumption 

used in the derivation of (11). The mean radial velocity at all 66 data points within 
-1 

the cloud stern was 1. 3 m sec . As mentioned above the mean vertical velocity was 

9. 3 m sec - l. So w is only 7 . 0 times larger than Vr , instead of being the assumed 

10 times larger. However, the assumption that w was 10 times larger underestimates 

the characteristic diffusion coefficient by only 4 per cent and therefore the assumption 

is quite valid. With this small correction factor taken into account, the characteristic 

eddy diffusion coefficient for the above cloud is 5. 0 x 103 rn 2 sec - l; in the case of both 

this and the other coefficients , the characteristic coefficients have been larger than 

the median coefficients but all definitely have been of the same order of magnitude. 



6. Derivation of Empirical Relations 

All of the coefficients obtained in the preceding sections are plotted in the log­

log presentation found in Fig. 11; also plotted are data points used by Richardson 

(1926) in deriving the well-known empirical relation 

K = 0.2 cm% sec-1 L% (cgs), ( 12) 

where l is a characteristic length representing the separation of two entities which 

initially were side-by-side. Therefore, as time goes on and the two entities become 

farther apart due to the influence of larger turbulent eddies , the magnitude of the 

coefficient increases. In order to plot the data points in the figure, it was assumed 

that L represents the mean diameter of an updraft (or cloud). 
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Even though Richardson's data sources will not be mentioned here, it would be 

advisable to indicate what the coefficients represent. The smallest coefficient is for 

the molecular diffusion of oxygen into nitrogen, the largest is for "diffusion due to 

cyclones regarded as deviations from the mean circulation of the latitude," and the 

others are obtained from the mean variation of wind with height ( L being the vertical 

separation of anemometers) and from the motion of balloons and volcanic ash ( l being 

the mean of the height of the object above ground and the vertical displacement between 

two sightings). Considering the variety in the method of measurement, it is surprising 

that Richardson could find any consistency between the data points. 

The dashed line in Fig. 11 is the one Richardson drew through his points and 

is described by (12) . The solid lines for 

K = (ig0 )2 (mks) ( 13) 

and 

K = 0 2 (mks) ( 14) 

represent simple relations for the change in coefficient with diameter for nonrotating 

and rotating updrafts , respectively. While the data points for nonrotating updrafts 

(Clouds) remain close to the line, there is a one order of magnitude scatter in the 

coefficients for vortices. Therefore, Eq. (14) can be used to obtain only a very 

crude idea of the order of magnitude of exchange coefficients in rapidly rotating 

convective currents. 



A summary of the coefficients computed for the cumulonimbus in the previous 

section and the coefficients indicated by (12) and (13) are presented in Table 5. It is 
seen that Richardson's equation underestimates and that (13) slightly overestimates 
the median values for the three coefficients. 

Table 5. Summary of exchange coefficients for the cumulo­

nimbus, with median values computed from Eqs. (12) and (13). 

Exchange 
Coefficient 

Kz (60 points) 

Kr (60 points) 

Kd (60 points) 

Richardson's Eq. 

( L = 4 km) 

K = (0/1002) 

(D = 4km) 

Lowest 

2.0 x 10 

0. 2 x 10 

2. 9 x 10 

Median 
2 -1 (m sec ) 

1.4 x 103 

3 1. 2 x 10 
3 1.4x10 

0.6x103 

1.6 x 103 

Highest 

4 
1. 7 x 10 

4 o. 7 x 10 
4 1.6x10 

It is noted in Fig. 11 that Richardson's lowest data point, which is the only one 
representing molecular diffusion, departs markedly from a straight-line trend of the 
remaining eddy diffusion points. Though it may be unethical to tamper with another's 
data, it is felt that, in light of the data computed in this paper and the role of the 
molecular diffusion point in biasing the slope of Richardson's line, a re-evaluation of 
Eq. (12) should be made. 

Figure 12 shows a plot of Richardson's eddy values, the mean of the log of the 
exchange coefficients ( Z, R, F ) from Fig. 11 for each of the three cloud types (see 
Table 3 for tabulated values), and a mean of the three coefficients computed for the 
cumulonimbus (see Table 5). The sloping line was computed by the method of least 
squares. The closeness of data points to the line is extremely encouraging from two 
points of view: 

1) even though Eqs. (2) to (5) had no rigid physical basis, the fact that the 
computed values--especially the one for the actual cumulonimbus--fall 

so closely in line with independent values leads one to strongly believe 
that the equations are capable of predicting extremely realistic values 

24 



for the various exchange coefficients; and 

2) there seems to be a "universal" relationship between exchange co­

efficients and a "characteristic length", which can be considered as 

the predominant scale of turbulence in a given situation--no mater 

whether one is concerned with general turbulence in the air, turbulence 

within a cloud, or the deviation of cyclones from the mean circulation 

of a given latitude. 

A re-evaluation of Richardson's data together with the data computed above 

results in the following equivalent universal relations: 

( 15 a) 

or 

- 2 s;. 
K = 2 x 10 3 m1s sec-1 l 5 (mks), ( 15 b) 

where K can be considered as representing any of the coefficients because, in non­
rotating air, the various coefficients appear to be of the same order of magnitude; 
the characteristic length ( L ) concept has been used here without considering the 

physical processes involved--in the case .of clouds, L can be taken as the diameter of 
nonrotating updraft or downdraft cells. 
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7. Summary and Conclusion 

The purpose of this paper has been twofold: first, to use a set of proposed 

equations to determine the order of magnitude of exchange coefficients in various -

sized vortices and clouds and, second, to use empirical data to confirm that the 

proposed equations are physically realistic. 
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It has been shown that there is a marked difference between the range and order 

of magnitude of exchange coefficients for rotating and nonrotating convective currents. 

For a given diameter, the coefficients within a vortex are several orders of magnitude 

larger than those in nonrotating clouds. In vortices there is a two order of magnitude 

range in the various coefficients, while the larger clouds exhibit less than half an 

order of magnitude variation. This latter fact has been exploited intuitively, and also 

out of necessity, by investigators who have assumed that the viscosity and diffusion 

coefficients are equal. Summaries of the computed values for model vortices, model 

clouds and a cumulonimbus are given in Tables 2, 3, and 5, respectively. 

Some of the coefficients computed for the cumulonimbus in Section 5 were of 

the order of 104m 2sec-1; one might argue that this is unrealistically high , that the 

viscosity term is larger than the others in the equation of motion. Therefore, it 

would be wise to make an order of magnitude check of the vertical equation of motion 

for clouds 

dw I dP 2 dt = - p dz - g + Kz \l w, 

where w is vertical velocity, p is density, p is pressure, g is acceleration due to 

gravity, Kz is eddy viscosity coefficient for vertical motion, and \12 is the Laplacian 

operator. The first term on the right is of the order of 1 to 10 m sec -2 in a small 

cumulonimbus, the second term is of the order of 10 m sec -
2 

and the third term is as 

high as 1 to 10 rri sec - 2 only if Kz is equal to 105m 2sec -l, which is an order of 

magnitude higher than any actually found. So, the computed orders of 103 and 

I04m 2sec -l for a small cumulonimbus are quite realistic. 

The most convincing evidence that has been presented to establish the implicit 

physical validity of the set of proposed equations is shown in Fig. 12; the computed 

values for both the model clouds and the cumulonimbus agree extremely well with 

noncloud data points. The consistency of all of the data has made it possible to 

modify Richardson' s (1926) "universal" relation, which expresses an exchange 

coefficient ( K) for all scales of phenomena as a function of a characteristic length 



( L ). The new relation is 

2;. 8/5 
K = 1, 3x 10-2cm5 sec-1 L (cgs) 

or K = 2 x I 0-3 m21
5 sec- I L15 (mks). 

The set of equations ( (2) - (5) ) proposed to be used to compute the eddy 

viscosity and diffusion coefficients within convective currents has been found to have 

implicit physical validity. This conclusion is based on the facts 1) that the computed 

values for the kinematic eddy viscosity coefficient in a cumulonimbus had excellent 

agreement with independently determined values (see Table 4) and 2) that the values 

of the eddy viscosity and diffusion coefficients computed from the equations for the 

cumulonimbus and for model clouds fall in line with independently determined values 
for other scales of atmospheric phenomena. 

Therefore, it can be stated with considerable reliability that the set of 

equations presented in Section 2 will provide accurate values for the various exchange 

coefficients during numerical simulations of atmospheric processes. If only the 

proper order of magnitude of the coefficients is desired for a given sized convective 

current, the "universal" relation given above can be employed. 
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