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6.022J/2.792J: Quantitative Physiology: Organ Transport Systems
PART I: Cardiovascular Physioclogy
A, FUNCTION OF THE CIRCULATION
Transport: oxygen/COz; nutrients; waste products; heat
Communication: Hormones i
Heat Exchanger :
Protection: Clotting mechanisms; WBC's, anti-bodies A
|
B COMPONENTS OF THE €.V, SYSTEM
Pumps , conduits,exchéngers, reservoirs, fluid medium i
Division into high-pressure delivery system and '
low-pressure capacibance svstem (See Fiogure i) .. a
Organization of components (See Figure 2). .8
Typical dimensions, velocities, continuity -eguation (See
Digure 3 Tablies 1J8
Perfusion and 02 uptake of representative organsg (See
Figure 4.
Typical Normal Values (See Table 2).
€. FUNCTIONAL ANATOMY OF THE HEART

Anatomical Landmarks
Conduction System
Cardiac Cycle and function of valves (See Figure 5).

Heart Sounds.



¥ie. | SCHEMA 0f THE CIRCULATION

Exchangae ; Ema\‘i&mcse.
Left Heart ¥ i /!?5'3\11' HearT g‘,
ke— HIGH PRESSURE Low PRESSORE — i
(DELIVERY ) {cAaPAcIiTANCE)
VELVMES Fe-zoo L. —a-’,ﬂ»———-ﬁ BO ce. P 3,000 c;,-—#-}-—-&ioe :.g.usw{-uf 1380 ce. -—-—-——-———-anl
Tressures /00 wamilq T mumtlsy 15 vawm H% 5 mm Hy,
(raean) |

FLow 1Wate  5-30 L/win.



Bronchial

——— Vena cava

7
il
W I

| :
£ ,Lj Coronary

Low-pressure side
High-pressure side

Portal

Tubular Glomerular

Hepatic, legs

_—

~Arrangement of the parallel routes by which the circulation passes from the aorta to the ver
cava. Representatives of the different categories of route discussed in the text are indicated. The X’s ins
cate the Jocation of control points where arterioles may control the flow. RA, right atrium; LA, left atrius
RV, right ventricle; LV, left ventricle; PV, portal vein. (From Green, H. D.: Circulation: Physical prin<
ples, in Glasser, Q. [ed.]: Medical Physics, Vol. 1 [Chicago: The Year Book Publishers, Inc., 1949], p. 21
Original illustration kindly furnished by H. D. Green.)
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TABLE 1

TABLE i—GEOMETRY OF MESENTERIC VASCULAR BED OF THE Dog*

Kinp or DIAMETER

VESSEL (Mm)
Aorta 10
Large arteries 3
Main artery branches 1
Terminal branches 0.6
Anerioles 0.02
Cupillaries : 0.008
Venules 0.03
Terminal veine s
Main venous branches 2.4
Large veins 6.0
Vena cava 125

*Data of F, May,

S ———

No.

1
40
600
1,800
40,000,000
1,200,000.000
80,000,000
1,500
600
40
1

TOTAL

CROSS-SECTIONAL

AREA
(Cm2)
0.8
3.0
5.0
5.0
125
600
570
30
A/
11
122

LENGTH
(Cm)
40
20
10

1
0.2
0.1

0.2

1

10

20

40

ToTAL VOLUME
(Cms3)
30
60
50
25
25
60
110
30
220
50

930
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Relative area
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Bigure 3

Mean velocity, cm /sec

Arteries

Arterioles
Capillaries [§=

Veins

Vena cava

Schematic graph showing
broken line, the changes in relative
total cross-sectional area (on a
logarithmic scale) of the vascular
bed; solid line, the mean velocity in
the different categories of vessel.



Figure 4

Fig. 4 Estimated distributions of card
the body in a man at rest. The estimates
consistent. The kidney is greatly overpert
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TABLE 2.

Representative Values for Human Circulation

Gardiac Output:

Heart Rate:

Stroke Volume

Pressures:

Dimensions :
(diameters)

Velocities:
(approximate)

Viscosities:

Resistance :

S c e/

60-80 beats/min.

(resting)
LS=25 L ters /min.

(exercise)

(resting)

120-160 beats/min. (exercise)

70cc. (resting)
1l60cc. (exercise)

Aortic Phasic

120/80 mmHg.

Mean 100 mmHg .
Pulmonary Leeerys 25 /10
Mean 15
Venous Mean 5
Intrathoracic =5
BoED
1 mmllg. = 1330 dynes/em®
Aorta 25 o,
Medium Artery a5 leme
Arteriole 30 - 604
Capillary 8.4
Vein (Medium) 5 S em
Vena Cava B linem.:
Red Bloed Cell 7 A

100 cm/sec. peak in aorta
0.5~1 mm/sec. in capillaries

208 emidcce

Waters =10
Plasma 1.5

in vena cava

centipoise
centipoise

Whole blood 4.0 centipoise

1 centipoise =

Total Pulmonary

Systemic

dyne~sec/cm.2

150 dyne-sec. cm.“5

1500 dyne-sec. cm..—5



6.022J/2.792J: Quantitative Physiology: Organ Transport Systems

MASSACHUSETTS INSTITUTE OF TECENOLOGY

Electrical and Mechanical Engineering Departments

PROBLEM SET #1

Assigned: February 7, 1974
Due: February 14, 1974

I.

dEAE G

Figure 1A shows the pressure waveforms in the left and

right ventricles, the aorta, and pulmonary artery.

the two ordinate scales).

The cardiac output was deter-

mined to be 5.0 liters per minute. Using the simple

Windkessel model for the circulation:

a)

b)

power dissipation? (Note

Calculate the mean power dissipation in the peri-

pheral circulation in watts. Do the same for the

4
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1 mmHg = 1330 dynes/cmz).
Estimate values for the resistance and capacitance

in the Windkessel model, and calculate the time

(Note

it dyne—cm/éec. = 10 ‘watts;

constant, T = RC.

e) Construct the pressure-volume loop (i.e. work diagram)

for the leftiwentriale. SEcbell the four major phases

of the contraction sequence.

d) Using thé pressure-volume loop, estimate the average

power output of the left ventricle. Assume an

end-

diastolic volume of 130 cc. How does it compare to

the power dissipated peripherally?

Figure 1B shows the left ventricular and aortic pressures

from a'patient withitaortiec 'stenosis. The cardiac output

is again 5 liters/min.



6.0223/2.7923 Quantitative Physiology
Problem Set #1 Organ Transport Systems
Page 2
a) Estimate the average power dissipation in the
systemic circulation in watts.
b) Construct the pressure-volume loop for the left
ventricle, assuming an end diastolic volume of
150cc. |
c) Estimate the average power output from the left ventri-

cle, and compare this with the power dissipated

peripherally. Comment on the discrepency.



Page Three

e | =R CL & Il AR T T 2R ﬂ 22073 ..]J
o | R e sl b (o By i i =t |
| a8 ek I3 8| | | |
fi b i = Ei 5 ! !
m u 4 ) M i - | b
| i i I it - o !
= i . = g

20 Squares to the Inch : : .\



6. 0220/2 5792 Quantitative Physiology
Problem Set #1 Page Four
Problem 2:

The following heart sounds and murmurs result from certain
specific anatomic abnormalities. From your reading and
knowledge of the physical determinants of heart sounds,
present a brief and logical explanation of the following £ind-
ings.
a) The heart rhythm is completely irregular—~varying
: intervals between beats. The intensity of the
first heart sound varies form beat to beat. Care-
ful observation reveals that the intensity of the
first heart sound is correlated with the previous
' inter-beat interval. Would you expect shorter
intervals to be associated with louder or softer

first heart sounds? Why?

b) What effects would elevated pulmonary artery blood
pressure have on the components of the second heart
sound? Why?

e) The first and second heart sounds are normal, with
normal splitting of A2 and P, with respiration.

There is a systolic high-pitched blowing murmur :
approximately equally loud throughout systole. It
is heard best over the lower sternum, and radiates
upward toward the base of the heart. It gets louder
during inspiration, and it is noted that the venous
pressure in the neck increases noticeably during
systole.

d) The first heart sound is normal. The second heart
sound is single, with no splitting heard. It was
loude st akRElicllioftisecondiintereosEal space. There
was a short "diamond-shaped" systolic ejection murmur
heandflovertthe Neighit = 2mnd intercostal space which
radiated into the carotid arteries. There was also
a diastolic murmur, high-pitched and decreasing in
intensity during diastole. It was heard best over the

right sternal border.
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Page Five

Problem 3:

1L

A simple lumped parameter model of the circulation is
the so-called "Windkessel" model shown in Figure 1.

C represents the arterial capacitance, and R the peri-
pheral resistance. The heart is represented by the
current source I(t) which generates a train of impulses
of area AQ (corresponding to stroke volume) at a fre-
quency, f. In the model i(t) represents blood flow in

the aorta, and V(t) represents arterial pressure.

i o a*ea,::&sq

-:*ﬁa

. :
| V&) _ . | ;}’&
'}

Figure 1

a) Using this model, express the steady-state arterial
pressure W (t) in terms of 'R, €, AQ and £. 3

b) Derive an expression for the systolic pressure, dia-
stolic pressure, and mean arterial pressure.

c) Sketch the general shape of the curves relating the
- above pressures to stroke volume, heart rate and
peripheral resistance.

d) How does pulse pressure (systolic-diastolic) vary
with arterial capacitance?
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II. During a heart catheterization, aortic pressure was
measured continuously. A measurement of cardiac output
was made and was determined to be 5500 cc/min.

The aortic pressure tracing taken at the same time is

shown in Figure 2.

Eiguxe 2

8 § | _{gg‘ il & —%-_ﬂﬁﬁﬁ 1:

e ‘ 0. b sec.

& Calculate the lumped arterial capacitance, %%, for the
equivalent Windkessel model.
Calculate the peripheral resistance, Rp.

T Having "calibrated" the system once, and assuming the

value of C to be essentially constant throughout the
_ remainder of the catheterization beat-by-beat blood
pressure may be obtained. Under what conditions might

it not be reasonable to assume a constant C?
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Problem 4:

a)

b)

_istic Reynolds number at the peak of systole of the

From Table I enclosed, calculate typical Reynolds
numbers for peak systolic flow and mean flow

Reynolds numbers for the major elements of the sys-

temic circulation.

Suppose one of the main arteries,

artery, is reduced in diameter by the presence of

severe atherosclerosis;

lized so that the constricted diameter, d, is 1/3

of the undisturbed diamet

fluid flowing through the constricted region?

er, D,

TABLE 1
Some quantities relevant to the circulation

Quantitative Physiology
Organ Transport Systems
Page Six

e.g. the femoral

1f the constriction is loca-

what is the character-

Rlood voluma

Number of red cells
Number of white cells
Specific gravity of blood

Tidunn

=
O oriiivo

5% 108 mm=2

10* mm~3
106

Viscosity of blood
Cardiac output
Heart rate

Variable. 0-03 poise in large tubes
6 litres min~—?
80 beats min~*

Stroke volume 70 ml
Duration of systole 0-3s
Duration of diastole 0-5s

Dimensions of the circulatory bed

Vessels Press;r{res Diamel \Elic?coictly C\?c[; itl?rli:]lf ¢
(mmHg) (cm) (cms-1) (ml)
Aorta and large arteries 120/80 3-1 100/0 300
mean 100 mean 25
Small arteries - 120/70 1-0-1 10-1 400
. mean 90
Capillaries 20 0-0008 0-05 300
Small veins 10 0-5 1 2300
Main veins 0-5 4 0/25 900
: ; mean 10
Heart — — — 360
! - (diastole)
Pulmonary artery 25/10 ° 4 50/0 130
mean 15 mean 15
Pulmonary capillaries 5 0-001 0-02 110
Pulmonary veins : 0 1 10 200

The figures are very approximate idealizations for an adult man.



e ——— .

B — = A----.qqegng-mﬁq‘

6.0227/2.7923

Quantitative Physiology
Problem Set #1

- Organ Transport Systems
Page Seven

Problem 5:

e From the data of Table 1, estimate the mean and peak
shear rates in the aorta, major arteries, and arterioles
using:

a) A Poiseuille velocity profile

b) A top-hat profile as shown below.
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February 8, 11, 1974 Cardiovascular Pathophysiology
Lectures 3,4, HST 090 Dr. Mark

HEMODYNAMICS AND THE PERIPHERAL
CIRCULATION

Part II: Hemodynamics

ik Introduction

A detailed examination of blood flow in the peripheral
circulation reveals enormous variety and complexity. Such
phenomena as pulsatile flow in viscous elastic vessels; pro-
pagation of waves in multiply-branched, tapered elastic con-
Quits; capillary flow; anomalous viscosity of blood; turbu-
lence; etc., are all observed in the cardiovascular system.

A considerable effort has been expended at developing quanti-
tative models for many of these phenomena by numerous investi-
gators (referencés 15,2,4,6, 7,810 )5 A1 Ehough®the detailed
description of cardiovascular fluid mechanics can become guite
complex, it is qguite possible to gain considerable insight
using rather simple models. Our objectives will be to explore
some of these simple models since they are guite helpful in
uﬁderstanding the normal and pathologic physiology of the car-

diovascular system.

II. Stationary Flow.

At every point in a flowing liquid we can define the
velocity, a vector which in general is a function of both posi-
tion and time, G(x,y,z,t). In stationary or steady flow the

velocity vectors do not change with time, and hence are functions

only of location.

At any point P of space, then, the particle at that point
: possesses the same vector velocity, ?5, no matter at what in-
stant of time it is observed. If an individual particle were
labeled (by dye for example) and its motion traced, it would
move from point P to point Q (see Figure 3) along a definite

paEh. Every succeeding particle coming to P would then follow
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the same path to Q assuming the same velocity vector field.

Lines of flow or stream lines may be drawn through the medium,

tangent at every point to the velocity vector. By definition
liquid can never flow from one line to another. Simularly,

one may define tubes of flow, the elements of their surfaces
being lines of flow. We may consider the liquid to flow through

these tubes, as water flows through a pipe, never pausing out-

side since the velocity is always tangential to the surface
of the tube. '

KilguEe s

IiI..Continuity Equation

If we consider steady flow we may consider a convenient
control volume with longitudinal boundaries coincident with
a tube of flow and transverse boundaries at right angles to
the stream lines as shown in Figure 4. By definition no flow
occurs across the longitudinal boundary. The mass of fluid

which crosses surface A, in time dt is

dm; = § a,v.at
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where S’is the fluid density, Al is the area of the transverse
boundary at P
P

and vy is the velocity at P Similarly at

ll

the mass of fluid crossing A2 is

l.
2

If there are no sources or sinks within the control volume,

and if the fluid is incompressible such that,? is constant,

dml = dm2

Alvl = AV, (l)
Thus, the velocities in a given tube of flow must vary inversely
with the cross-section of the tube. Equation (1) is a simple

form of the continuity equation, and holds for incompressible
Fluidss

Ay Figure 4

A more general formulation of the continuity equation begins
by considering a differential control volume AxAyAz in a region
where density and velocity are functions of position in space
.and time. (Figure 5). We compute the flux of mass per second

through each face into the cube to get, for the three directions
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9 (pv.) 3 (pv )' ‘
- [—~5§5~A%]AyAz, -—[ijﬁrii by| bzbx

sipi. ) .
= —'é-z—‘—"— Az AXAY

From the principle of conservation of matter, the sum of
these (total flux of mass into the cube per second) must
equal the time rate of change of mass within the control

volume--
! —g(prAyAz)
ot

Since AxAyAz is independent of time we may combine the above

expressions and factor out AxAyAz to get

op 3 (pv,,) d(pv,) a(pv,)
o v Z e
= " B Tom @ e (2)

In vector notation this may be written:

3 - —

—% ke Ve oy B0 (50

In the case of an incompressible fluid, p= constant, and
equation (2) becomes '

oV oV oV
X Yy 20
e e (4)
or
— SR 5
Ve =y =20 : (5)
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Elgure 5

oz /. ' PV + aa(?vx) Ox A\/AZ
¢, Ayht - ’f_)_ ;
ayl, .
H X

|
®

¥

2

IV. Beronoulli's Equation

Bernoulli's theorem, which is derived in most standard
texts (references 3,9) states that the total energy per unit

volume along any stream line in steady incompressible flow

_is constant, though of course the value of the constant will
in general change from one stream line to another. The equation
is:

1 /2 pv2 + P + pgh = constant (6)

where p is the density of the fluid in grams/cc, v the velocity
in cm/sec, P the pressure in dynes/cmz, g the acceleration of
gravity (980 cm/secz), and h the height of the fluid above some
arbitrary reference in cm. Instead of gram-centimeter-second
units, we may use millimeters of mercury for all terms (1 mmHg =

2

1,330 dynes/cm2). In the above expression 1/2 pv~ is the kinetic

energy per unit volume along'the stream line, while p and pgh
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appear as the potential energy per unit volume due to pressure
and the earth's gravitational field respectively. It should
be noted that the relation expressed in egquation (6) assumes
no energy losses due to friction--it applies only to ideal
fluids, not to viscous flows. Nevertheless, its application
in situations where dissipation of enefgy is negligible is
extremely helpful. Several illustrative examples follow:

(a) Consider the simple example shown in Figure 6.

A tube of varying cross-sectional area carries fluid

in a horizontal direction. We wish to determine the

relation between P2 and Pl'

S

5 .ﬁm .Ef ?z 7 ﬂﬂfﬂ%ff
H' / Vi o ; : ﬁ& ‘J vz. - ‘ Y al ) 3
| - Figure 6 ﬁﬁ\“‘ﬁsgggn_n__

Since the tube is horizontal, we may neglect the gravi-
tational term in equation 6. The equation of continuity
permits us to relate the cross-sectional areas and

velocities:

Bolo = gl
2 A2 i
Bernoulli's principle states:
2 i 2 :
1/2 pvy + B %2 pvs + P,
i i 202
B, =B 1/2 p(v2 Vl)
A
2 s
“ P2 = P1 1/2 pvy (K;) 1
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Thus, in the narrowed portions of the tube, the pressure

drops as the velocity increases. One interesting physiologic
application of this finding 1s discussed by Burteon (Chapter 10)
in connection with the arterial narrowing due to atherosclero-

tic plaques. Consider the vessel shown in Figure 7.

N e
A, & Vi, : HZJ’P‘)\G-

]
'J.J

Figure 7

Assume the vessel's normal area to be'Al, with a mean pressure
of 100 mmHg and a velocity of 30 cm/sec (p=rl). If the vessel
is narrowed by the plague to an effective area only one ninth
as large as normal, what will the transmural pressure be at
the point of narrowing? What are the possible cénsequences

of this phenomenon? (Consider the Bronx cheer) . Consider
also the possible disastrous results of capillary ingrowth

or cracks into plagues as illustrated in Figure 8. How might
such geometry lead to rupture of the capillaries into the

plague?

Figure 8
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b. Pressure Measurement

If an obstacle is placed in a liquid flowing with
velocity Vgr the liquid must come to rest just before
the obstacle, and the streaming is divided into two
branches one on each side of the obstacle. The original

parallel streamlines are deformed as shown in Figure 9.

R S —

ﬁngﬁﬁﬁﬁgf

e,

D o

R,w=0
Figure 9
There is a stagnation point at the tip of the obstacle
(vl = 0) and by the Bernoulli theorem,
= 2
Pl = PO + 1/2 PV, (7)

where PO and v, are measured in that part of the liquid

where the flow lines are straight.

Question: Extend this reasoning to the problem of measur-
ing pressures in the arterial system with catheters. Com-
pare the pressure readings which would be obtained from

a catheter with the opening facing "upstream" (end pressure)
versus one with laterally oriented openings (side pressure).
Consider Figure 10 which shows the amount and relative
impertance of kinetie encrgy akt different cardiac outputs.
Note the rather significant effect in the pulmonary artery.
(Here catheter opening usually points "downstream", and

would underestimate pressure.
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Figure 10

AMOUNT AND RELATIVE IMPORTANCE OF KINETIC ENERGY IN DIFFERENT
PARTS OF THE C:2CULATION® 5

it A RE_b:l_\‘G_Cful\C (?yn-m‘ ik Carpiac Qurputr INCREASED 3 TIMES
Velocity Kinetic Encrgy  Pressure  Kinetic Energy as  Kinetic Energy Pressure  Kinetic Energy as
VESSEL (Cm/Scc) (Mm Hg) (Mm Hg) % of Total (Mm Hg) (Mm Hg) %% of Total
Aorta, systolic 100 4 120 3% 36 180 179%
Mean 30 0.4 100 0.4% 3.8 140 2.6%
Arteries, systolic 30 0.35 110 0.3% 3.8 120 3%
Mean 10 - 0.04 95 Neg. 100 Neg.
Capillaries 0.1  0.000004 25 Neg. Neg. 25 Neg.
Venae cavae
and atria 30 0.35 2 12% 3.2 3 52%
Pulmonary artery,
systolic 90 3 20 13% 3 27 25 52%
Mean 7J5) 0.23 12 2% 2.1 14 13%

¢The cases where kinetic erergy should not be neglected—that is, where it is more than 5% of the total fluid energy—are indi-
cated by italic figures. When an artery is narrowed by diseasc processes, the kinetic energy becomes very important.
NoTE: Neg. = Negligible.

'

Cln Calculation of Valve Areas

The Bernoulli principle provides an approach for
estimating the size of valve areas using data obtained
via cardiac catheterization. In Figure 11, the chamber
represents the ventricle during ejection. Fluid is

ejected through the orifice, and the cross-sectional

Figure 11
area of the jet is A. The pressure inside the chamber

is B and .the velocity is v_. The velocity and pressure

of the fluid in theijet are v nE . Bernoulli's egquation

states:
: D i 2
po + . 1/2 pvo = Pl + 1/2 pvy

e
2 D(Vl = VO) = PO Pl.
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If we assume that Vi SoSaViay this equation becomes:

1/2 pvi = P_ - P,
vy =_J%(PO = Pq) (8)
If the flow rate, Q, is known, we have
Q = Avl
and
n- g
L
Substituting from above, we have
| Q
£ e o)
o Al '

In our derivation k = | 2/p. The form of Equation

(9) has been verified experimentally for diseased
‘human heart wvalves,; but the wvalue of therconstant, 155
differs depehding on the valve involved (reference 5)

Q is measured in cc/sec; Po = Pl is the pressure gradient
across the valve in mmHg; k is 44.5 for the aortic

valve and 31 for the mitral valve; and A is the valve

. 2
areas 1n €m

V.. Viscosiity
: To this point} we have been considering ideal fluids in
which no work is done in changing the shape of the fluid.
All fluids found in nature depart from idealness to a greater
or lesser extent. Some liquids such as glycerine or heavy
0il depart widely from the ideal, and are known as viscous
liguids. 25

The concept of viscosity was described by Sir Isaac Newton
as a "lack of slipperiness" between adjacent layers of fluid.

This lack of slipperiness produces an effective drag or force
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between two layers moving past each other at different veloci-
ties. An understanding of this internal friction may result
from consideration of a simple espenimenti i l(Seel i ciare Sl 2)
Suppose a viscous liquid, such as glycerine is placed on a
glass plate of area A, and a similar plate is placed on top

of the liguid. If the top plate is pulled horizontally with

a conskants fercer it i s founds thatsthe top pilate attains

a constantivelecity 'we Since the dliguidvclings to the plates,
a layer of fluid clinging to the top plate moves with thei'same
velocity v, while the layer clinging to the bottom plate re-
mains at rest. : '

The velocities of intermediate sheets of liguid are proportional
to their vertical distance from the bottom plate. Assume the
total thickness of the liquid is a. The impressed force is
proportional to their vertical distance from the bottom plate.
Assume the total thickness of the liquid is a. The impressed
force is proportional to v and to A and is inversely propor-

tional to a. Thus,
= Ve
Ei=A

More generally, as a »o we would have the following fundamental
relation:
4 Mo
A H dy

where y is measured perpendicularly to the direction of motion.

(10)

.The proportionality constant | is called the coefficient of
viscosity ofiEhe liquid afnid is expressedsin dyne-sec/cm2 or

poise. Water has a viscosity of .01 poise or 1 centipoise.

Whole blood viscosity is about 3-4 centipoise, and plasma is 1.5
centipoise. The viscosity of blood, however, is a function of
hematocrit and of vessel size (see Burton Chapter 5). It may

be considered as a Newtonian fluid if the radius of the vessel

is greater than abeut 0.5 mm., andsif the ‘shear rate (dvx ) ex-
ceeds 100 sec. = (See Ref. 6).

a

[
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Eigure 12

VI. Laminar Flow in Rigid Tubes

The basic law governing the flow of a viscous liquid in
a long cylindrical rigid tube'was found by the French physician,
Poiseuille, from careful measurements of laminar flow in tubes
of wvarious diametegs. It is helpful‘to consider such laminar
viscous flow as a first approximation to blood flow in small
arteries. In laminar flow, we think of sheets of liquid as
cylindrical tubes sliding over one another.

Consider a tube of radius r_, length Al, and a Eluid of
viscosity, u. (See Figure 13.) The pressure at x = 0 is Por
and at x = Al the pressure is PB' Focus on a cylindrical shell
‘- of radius r, thickness dr, and length Al. The net force acting

on the shell due to the pressure gradient is:

I

jo (PA A

the viscous forces will be a function of surface area and

F = PB) dfs= (P = PB) 2ar L

velocity gradient, and in genefal GaLdLil Jer=

—_— Y . g_Y.
Fv(r) = U 2mr Al T
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The net viscous force acting on the shell would be
Qi '
EL ()=l )| = F (r) | =+ [F_(r)]dr =
v v e v % or v

eI
or

This ferce williactian aldirectieon opposite to Fp. Since flow

e P LS

is stationary, the two forces must add to zero.

F_(r) + Fv(r) = 0

P
3 GV
(PA__ PB)2ﬂr dr +'§f EJ ZﬁrA HEJ = 0
Integrating once, we have:
2 v
(PA f PB)wr + u2nr Al Tl kl
: (Ghye = <

Since o = 0 when ¥o= 0, kl = 0.
‘Rearranging, we have

dwv (PA g PB). =

de o WAL
Integrating; 5

~(EN = SiPT ) e
v oS L B + k
4uAl 2
The second boundary condition is that v = 0 at r = ro, and
hence the equation becomes:
| Skl 12 5) 2
1 A B 2 o s
Ve [1 (-}5;)] -

Equation (1l1) is the equation of a parabola, and the velocity

distribution is plotted in Figure 14.
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Figure 13
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Knowing the velocities of each annulus, we may now calculate
the relation between the total flow in the tube, é, and the

‘pressdre gradient across the tube (PA - P 7/ INIES

B
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For each annulus the flow dé would be

dQ = v(r) da
g 2
i (P B : r_ ] 2
AT ym = (f;) o 2mr di
Integratineg Fremer =10 to ¥ = r, Wwe obtain
r
2
® r (P S 2] ) 1c 2
= o) A B S e e
2 “f s ee 0 DGR -
o r
o
- = Tr ° l . O L] —
Q mae T (PA PB) (12)

Equation 12 is the well known Poiseuille's law which re-
lates flow to pressure drop for rigid tubes. Note the division
of the iterms ‘into a censtant, ¥a Wiscosity term, a geometric
term and a pressure term. In particular, notice the strong

dependence on tube”radius'ro.

Equation 12 may be rewritten in the form

(PA - PB) = QR
e, 8 e o é-];
where R = = U r4 (13)
o)

. Here R is termed the resistance of.the tube and is directly
proportional to length and viscosity and inversely proportional
to the fourth power of the radius. Thus, one would expect that
the major contribution to vascular resistance would be made by
the small vessels. Thsi is borne out by consideration of the

following table:

ittt it bicbba Sl
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—RELATIVE RESISTANCE TO FLOW IN THE

VascULAR Brp: CALCULATED FROM TABLE 6 AND .

1
POISEUILLE'S Law (R ot r—4)

Aorta 4% Venules 4 %
Large arteries 5% Terminal veins  0.3%
Mean arterial Main venous

branches 10% branches 0.7%
Terminal branches 6% Large veins 0.5%
Arterioles 41% Vena cava 1.5%
Capillaries 27%
Total: arterial - Total venous = 7%

capillary = 93%

* Note also that the strong dependence of the resistance
upon vessel radius implies that sensitive regulation of flow-
is possible by changes in vessel diameter due to smooth muscle
action. _

Although Poiseuille's law has many engineering Ap§1ina—
tions, and although it gives considerable insight into flow
in the circulation; nevertheless, it cannot be rigorously
applied to the circulation. It requires the following assump-
tions; as pointed out by Dewey and Jaffrin (reference 6).

(1) The fluid is homogeneous and newtonian. Blood
may be considered as a newtonian fluid only if
the radius of the vessel exceeds 0.5 mm and if
the shear rate exceeds 100 sec -l1. This condition,
therefore, excludes arterioles, venules and
capillaries.

(2) The flow is steady and inertia-free. If the
flow is pulsatile, the variable pressure gradient
communicates kinetic energy to the fluid, and the
flow is no longer inertia-free. This condition
excludes the larger arteries.

(3) The tube is rigid so that its diameter does not
change with pressure. This condition is never
met in the circulatory system, particularly-
in the veins. ;
More precise models of blood flow in the circulation have
been devised which take account of the properties of vessel
walls, inertia, pulsatile flow, etc. which are beyond the

scope of our consideration here. The interested student is

e e TP AR BT PR3]
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referred to referecnces (4,6,7, and B) for more sophisticated
approaches.

In particular flow in the aorta is not Poiseuille flow.
Blood enters the aorta as a bolus, with uniform velocity dis-
tribution over the cross-section. As the fluid flows down
the aorta, the viscous drag from the walls has an increasing
effect on the flow. In particular velocities near the wall
tend to decrease, and the penetration of the drag into the
fluid increases as the fluid continues down the conduit.
Eventually the "boundary layer" pénetrates to the center of
the conduit and steady laminar flow is established. (See
Figure 15.) The distance from the entrance to the point where
fully developed flow occurs is termed the entrance length Lpe
The ratio RE/D wilere D is the diameter of the conduit is also
relatedito Ehetwelocity and viscosisty ofwthe s Elinid . One might

expect - § to be direetly proportional teo V and inversely

E/D S B =
proportional to u.. In fact, a theoretical entrance length
which agrees reasonably well with experiment for non-turbulent
flow is

2 0.065R where (14)

/D

VDp
u
For the aorta Ve 258cm/sec.,; D= 255 cma 1 = 4 % 10

R = 1550. Hence,

R (Reynold's number) .

2

E/D = 100, or RE = 250 cm.

This result implies that the velocity distribution in the aorta
will tend to be uniform over the cross-section. Experimental

results for dogs is shown in Figure 16.
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Eigure 15

:::::u--__ ______________

Entrance length
Region of flow establishment with ' Region of
7 nonuniform boundary layers Jully developed

: : flow with uniform
boundary layers

‘Fiqure 16

%
Right

S

A

asnigg
Posterior

Left

Velocity distribution in the aorta of dogs. For each graph the ordinate
shows U/Uc..., mean velpcity at each station normalized to the mean centre-line
velocity, and the abscissa is R/Rw, the radial location of the measuring station
normalized on the internal Iuminal radius. :
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VII. Definition of Vascular Resistance

Equation 13 states that the pressure drop between two
points in the circulation is equal to the product of the flow
and the resistance. Rewriting, it becpmes:

R AD )

0

Equation 15 defines resistance as the ratio of pressure
gradient to flow. If the flow is measured in cm3/sec and P in
dynes/cmz, the units of R turn out to be dyne - sec/cmB. If
pressure is measured in mmHg and flow in cm3/sec, resistance
is expressed in "peripheral resistance units", or PRU. Note
that if the mean pressure drop across the circulation were
80 mmHg and the cardiac output were 5 liters/min (which is
about 80 cc/sec) the total peripheral resistance is close to
1 PRU. V

Notice alsb that equations 13 and 15 are in the same form

as the familiar Ohm's law in electric circuit theory,
L = (R ‘ (16)
The analogies between fluid variables and electric vari-

ables are:

Fluid ey " Electric
Pressure, P - R Voltage, &
Flow, O i FGurrent, ¢
Resistance, R = é@- B Resistance, R = %ﬁ
0

It is often helpful to represent vascular resistances in
circuit terms:

Example: If two vascular beds of resistance R; and R2
are connected in parallel, what combined resistance to flow

would result?
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!
—
v R < X, =
©
Answer:
= ,
T ﬁI—I—ﬁg* » remembering that
from circuit theory
. e
R = o R.
a3 i=1 Tl
VIII. Turbulent Flow; Reynolds Number

At high enough velocities, the pattern of laminar flow

described above breaks down into turbulence, in which the fluid

particles move in irregular and constantly changing paths in-
cluding vortex-like eddies. In turbulence, a sub-

stantial amount of the energy of flow is used to create the
kinetic energy of these eddies. Sir Osborne Reynolds first
treated the penomenon of turbulence gquantitatively in 1883.
_Reynolds showed that the critical velocity of flow in tubes
at which turbulence began depended on the viscosity, u, and
density,p, of the fluid, and the radius, r, of the tube.

The relation was:

=Rl
; V. de (17)
where p is the viscosity in poises, p is the density of fluid
in grams/cc and d is the tube diameter. The dimensionless
term R is called Reynold's number, and is
chd
u
'For long straight tubes, Reynolds found that if R>2000,

the flow became turbulent. "This is reasonably true also for

R = (18)
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the circulatory system except in cases of stenosis or partial
obstruction where turbulence may occur at Reynold's
numbers much lower than 2000.

If then, conditions in the circulation provide sufficient
velocity of flow in the cylindrical vessels, or a less, but
critical, velocity through narrow.orifices there will turbulence
in the blood stream. This can create vibrations which will
be shared by the elastic walls, and may be felt as a "thrill"

and heard as a "bruit" or"murmur."

IX. Vascular Capacitance

The walls of blood vessels are not rigid, but rather they
Stretch in response to increased transmural pressure. The
vessel walls contain four major elements: endothelial lining,
elastin fibers, collagen fibers, and smooth muscle. The
endothelium proVides a smooth wall, and offers selective
permeability to certain substances. The endothelial cells
play very little part in the total elasticity of the walls.

The elastin fibers are easily stretchéd (about six times more
easily than rubber). The elastin fibers produce an elastic
tension automatically as the vessel expands, and without bio-
chemical energy expenditure. The collagen fibers resist stretch
much more than do elastin fibers. However,‘these fibers are
slack, and do not exert their tension until the vessel has

been stretched. Thus, the more the vessel expands, the stiffer
it becomes. The smooth muscle serves to producé an active tension
bY contracting under physiological control, and so changes the
diameter of the lumen of the vessel. Figure 17 shows the
relative mixtures of the four elements in walls of various

vessels.
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Bicuise 1 7

THE VASCULAR BED

3 Aorta Medium Small art. - Sphincter
Art. Arteriole Pre-cap. AVA
0.4 cm 30u 35u
| mm 20u 30 u

End.
Ela.
Mus.
Fib.

True
capillary

8u
|

m
NS

End.

Ela.

Mus

Fib.

—Variety of sizes, thicknsss of wall and admixture of the four basic tissues in the wall of different

Ngod vessels. The figures directly under the name of the vessel represent the diameter of the lumen; below
this, the thickness of the wall. End., endothelial lining cells. Ela., elastin fibers. Mus., smooth muscle. Fib.,

collagenous fibers. (From Burton, A. C.: Relation of structure to function of the tissues of the wall of blood
vessels, Physiol. Rev. 34:619-642, 1944.)

Because of their ability to expand as transmural pressure
increases, blood vessels may function to store blood volume

under pressure. In this sense, they function as capacitance

elements, and are similar in that sense to storage tanks.
Such a tank is illustrated in Figure 18. The tank i1s of area
A, and fluid of density p fills the tank to a height h. The
pressure at the bottom of the tank is pgh. Since the volume

of the fluid is Ah, we may relate volume to pressure ioha
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S ; sl = _fi.
o & T

— | P — =

Figure 18A Figure 18B

this storage element:
vl p
- P9

A plot of volume vs. pressure would be a straight line
as shown in Figure 18B. The slope of the V vs. P is the

capacitance of the tank:

C:.qy-.zA_ :
dp pg (19)

Volume-pressure curves for arteries and veins are shown
(on different scales) in Figure 19. Note that the pressure is

transmural pressure as opposed to driving pressure.

THE VASCULAR BED

Figure 19

Aorta
Vena cava

Relative volume
n
]

O

1 1 il e e e =

(0] 80 |60 240 300 (0] 8 16 24
" Pressure in cms of water

—Comparison of the distensibility of the aoria and of the vena cava. The way in which the cross-
v ton of the vessels changes in the two cases is also indicated.
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The slope of this line at any point is the incremental
capacitance of the vessel at that particular pressure. Note
that the capacitance (or compliance) decreases with increasing
pressures. The capacitance also varies with age (how?). Note
also that veins have a much larger capacitance than arteries

and in fact, are often referred to as capacitance or storage

vessels.
With the added concept of capacitance we may extend our table

table of analogies between electrical and fluid variables:

Fluid Variable 7 Electrical Variable
Pressure,'P Voltage, £

Flow, 6 . - Current,i

Volume, V : Charge, g
Resistance, R = %2 Resistance, R = %i
Capacitance, C = %% Capacitance = E%

X. Hooke's Law, Laplace's Law

‘Two relationships which ére helpful in understaﬂding the
elastic behavior of blood vessel walls are Hooke's Law and
LaPlace's Law.

1. Hooke's Law
Consider i a stripief material el initial length lo,
and cross-sectional area A (see Figure 20). A

force F is applied to the strip, and in general
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Figure 20

& £ +>

___;.
AT e F?fe,a:ﬂ

| & 10 '

it will stretch to a new length, 1. Hooke's
law states that the force per unit area is
proportional to the fractional increase in

length. Thus,
—2) (20)

E is known as Young's modulus. For blood
vessels, E is a functien of pressure. The
following table shows the variation of E with

pressure for the thoracic aorta:

P, mmHg E dynes/cm2 x lO_6
40 12
T0E ™ 4.2
160 : 1)

220 18
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2. Laplace's Law

It is often of interest to relate the pressure

inside a vessel or chamber to the tension in the

walls. Consider a cylinder of length 1 and radius
E with thin wallls which 1s fillled wiith a fluia
under pressure P (Figure 21). There is a certain

tension per unit length, T, in the walls which

keeps the cylinder from exploding. We wish to

Frqume s 2

derive the relation between T and P. Imagine

that the cylinder were split down the middle.
The total force pulling the half-cylinder to
the right would result from the tension T

acting at each edge:

Bi= 2l
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In order for the vessel to be in equilibrium,
an equal and opposite force must be provided
by the pressure, P, acting against the area

of the half-eylinder.

F2 = P « Areq = P 2RIl
Since Fl = F2
: IRID = 2]
sl
B = (21)

Equation (21) ié known as Laplace's Law for a
thin-walled cylinder. Note that for a given
transmural pressure, the tensiqn required for
equilibrium increases as radius increases and
vice versa. What does this imply about sta-
bility of vessels under various conditions?
Can you derive Laplace's Law for a spherical

. chamber?

. XT. Pulse Wave Propogation in Arteries-Transmission Line Analocy

In this section, we wish to develop a simple model which
illustrates how pulse propogation may occur in the arterial
system. We will represent the artery as a thin-walled elastic
tube characterized by an equation of state relating the area

of the vessel, A, to the transmural pressure,p,

s

A = A(p)
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For simplicity we will assume a linear operating region

and define a compliance per unit length Cu such that

coRe |
Cu = E-E; = constant 3 :
This implies A = AO + CuP. : (22)

Consider a section of vessel as shown in Figure 22,

Figure 22

EQ:-' 'Uolunu.. ‘QIO\Q fu‘te,

A ° Ctoss Sectiomal ares.

The equation of continuity states that the net rate of increase
in mass of the control volume, p %% + dx must equal .the net

inflow into the control volume which is -p %% dx

Hence,

o :

We will make an additional simplifying assumption in deriving
the equation of motion--namely that to a first approximation
the axial velocity is small compared to the wave velocity which
permits us to ignore the non-linear terms in the acceleration.
(The net flux of momentum into the control volume is assumed

to be small compared to the time rate of change of momentum

within the control volume.) Under those conditions, Newton's
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law may be written:

oV

oo A s de > = -alP ay
mass - acceleora= forcde—Apressure: = area
3 tion :

Simplifying we have

avx p

1
St Lo = 0 (24)

Multiplying by A we obtain (noting that é = Avx),
. et s
e DT 0 (25)

Using equation 22 differentiating with respect to t and sub-

stituking ihte egen2 3, we obtein
Jece Bp o
= FENE ey = 0 (26)

Equations 25 and 26 form the familiar equations governing losslers
transmission lines, and p/A may be identified as Lu, the in-
ertance per unit length.

If the compliance of the vessel is assume to be indepen-
dent of pressure and location,; and if the area of the vessel
is assumed to be constant (no tapering and small perturbations
yith pressure), we may treat Cu and Lu as constants and solve

equations 25 and 26.

Differentiating (25) with respect to x, and (26) with

respect to t and eliminating the é terms, we have:

32p A sz =
S w0 Y
ot oX
or 2 2 . ' ‘
_3._122 _...%__ b (27)
ot P u  9x
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Solutions are of the form
Po= R (X=ct)

Thus pressure waves propogate at constant velocity, ¢, without

distortion, where
A 1

o (28)
pC \’ Lucu

This velocity is known as the Moens-Korteweg wave speed.

Q
1l
Il
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PART I: CARDIOVASCULAR PHYSIOLOGY (Cont.)

Fluid Mechanics of Heart Valve Action

(Ref. Bellhouse, B.J. The fluid mechanics of heart
valves, in Cardiovasular Fluid Dynamics, Vol.I, ed.

D. H. Bergely, pp. 261=285} Academic Press, 1972.)

ALs Aortic Valve

The aortic valve consists of three thin (0.lmm)
flexible, self-supporting cusps. Corresponding to each
cusp, there is a bulge in the aortic wall called a sinus,
(sinuses-of Valsalva). The coronary arteries arise from

two of these sinuses.

In the normal valve, blood flow is laminar, and further-
more, the reversed flow is less than 5% of the stroke
volume. The fact that flow is observed to be laminar
despite peak Reynolds numbers of near lO4 suggests that

the normal'valve offers no obstruction to forward flow.
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On the other hand the very low reverse flow at the end
of systole suggests the valve may be almost closed before
the end of systole. It also seems important that the
ostia of the coronary arteries not be occluded during
the heart cycle.,

The movement of the valve cusps has been studied
by Bellhouse by means of a model system, and they have
demonstrated the importance of the sinuses. The obser-
vations are:

At the start of systole the valve cusps open rapidly
and move out toward the sinuses. Vortices formed betwéen

the cusps and the sinus walls. The cusps did net £lutter,

- = 3 \
U e

- )

and flow entered each sinus at the ridge, curled kack

around the sinus wall, and then along the cusp to flow

out into the main stream at the points of attachment of

the cusp to the aerta. "Thus, the valve leaflets are sup-

ported, during ejection, between the main stream and the
_ trapped vortices.

After peak ejection velocity, as blood was being
decelerated (but still moving out of the heart), the valve
cusps move away from the sinuses, and are almost completely
closed before the end of systole. Reverse flow was less
than 5% of the forward S.V.

If the sinuses are occluded, the cusps open and touch
the walls of the aorta during systole, and there are no
trapped vortices. The valve closes by means of reversed
flow above, and back flow increased to 25% of the forward
flow.
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The action of the valves may be explained on the
basis of local pressure gradients in the region of the

aortic root. During deceleration of the blood (later

half of systole) there must be a reverse pressure gradient

in-the redgieon eof the acrtic eutlet. Speeificalily:

i sdly 2
P Pr = 5 puau
P = Pl = _ARD'-B—E
. = e 2 du
ol 2 4
- e o '
P. -~ P, is the pressure across the valve leaflet,

and positive gradients tend to close the valve.

When the valve is stenosed, a jet is formed which
is not intercepted, in general, by the edge of the sinus.
Vortices do not form, and the pressure measured in the
region of the coronary ostia may be as much as 30 mmHg
below the intraventricular pressure during maximum

ejection rate. (What clinical implications follow?)

2 The Mitral Valve

As with the aortic wvalve, there is less than 5%
regurgitation during systole across the mitral wvalve.
This implies that the valve must be almost closed at the

end of diastole. Two important mechanisms are involved.
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a. Vortex formation in the ventricle during
filling.

)
% l,‘!ﬂ'nllﬂﬂlm!”'b’b-

gLtk ?"@

/) 7/,
NN

The vortex behind the anterior leaflet was stronget
than the posterior vortex, tending to close the anterior
leaflet first.

1)) Deceleration of inflowing fluid.

As with the aortic valve closure mechanism,

there is a reverse pressure gradient across the mitral

valve during the deceleration of the inflowing

blood. This reverse pressure gradient will tend

to close the valve. A simple experiment illustrates

the principle. At t = o the fluid column is released.
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